MHB Are GCDs Always Defined in Integral Domains?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    domains Integral
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote Sections 9.3 Polynomial Rings that are UFDs.

I have a problem understanding what D&F say regarding GCDs on page 306 at the end of Section 9.3 (see attached)

D&F write:

======================================================================================

"we saw earlier that if R is a Unique Factorization Domain with field of fractions F and p(x) \in R[x], then we can factor out the greatest common divisor d of the coefficients of p(x) to obtain p(x) = dp'(x) where p'(x) is irreducible in both R[x] and F[x]. Suppose now that R is an arbitrary integral domain with field of fractions F. In R the notion of greatest common divisor may not make sense, however, one might still ask if, say, a monic polynomial which is irreducible in R[x] is still irreducible in F[x] (i.e. whether the last statement in Corollary 6 is true). ... ...

=======================================================================================

My question is as follows: Why do D&F say "Suppose now that R is an arbitrary integral domain with field of fractions F. In R the notion of greatest common divisor may not make sense"? D&F's definition of GCD on page 274 (see attached) gives the definition for a GCD of two ring elements a and b for any commutative ring - and there are no conditions on the existence of the GCD - so why for an integral domain would we have a situation where the GCD does not make sense?

Can anyone clarify this for me?

Peter
 
Physics news on Phys.org
I think a gcd between every two elements is only guarenteed in a euclidean domain.
 
To expand a bit on Poirot's answer, you can define a gcd for two elements in any commutative ring. But that does not mean that such a gcd actually exists. D&F give the example of the ring $\mathbb{Z}[2i]$, which is an integral domain but not a UFD. In that ring, the elements $8 = 2*4 = (2+2i)(2-2i)$ and $12+4i = 2(6+2i) = (2+2i)(4-2i)$ have the common divisors $2$ and $2+2i$. But neither of them is a multiple of $2(2+2i) = 4+4i$, so they do not have a greatest common divisor.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top