marcus said:
this is the post that started this thread
it seems like a constructive request.
I expect Nereid, among other people, has the basic info on tap
to list the various offered explanations of dark energy/matter.
It would be nice to have a list---with a little thumbnail sketch of each proffered explanation----as salsero requests.
Can anyone help salsero out?
Good timely reminder marcus, thanks.
IIRC, I wrote a somewhat lengthy and tedious post (or posts) on what observations have lead to the consensus view that the universe really does contain an awful lot of 'dark matter'; as salsero asked about theories which 'explain' the origin of DM (and DE), I won't go into that here.
First just a fine point on terminology - I personally don't think that any theory in science 'explains' anything! Sure, it's often used as a shorthand, but I feel we should never forget what science is and what its limits are; a good scientific theory is one which is consistent with good observations and the results of good experiments, and makes specific, concrete predictions which, when tested, match what is observed. 'Explanations' are how we may choose to interpret successful theories. (note that there's much more to science than my few words; I just want to highlight one aspect).
So, what is 'dark matter'? Some astronomers feel there's no need for the concept at all - all the good data can be shown to be consistent with good theories that we already have.
MOND is such a theory - the observations are accounted for modifications to Newtonian dynamics.
Our own PF member Garth has his SCC theory in which dark matter is just ordinary baryonic matter; the observations which others feel indicate the existence of dark matter are accounted for in SCC by modifications to GR.
Other astronomers consider the observations to clearly indicate a lot of mass in a form that is non-luminous, but feel there's no need to introduce a new form of non-baryonic matter to account for the observations - sand, pebbles, rocks, highly ionised gas, boulders, planetismals, etc may be enough.
Finally, there are some who feel the universe is not expanding; they have radically different cosmological models from the concordance one; I have no idea how these folk account for the observations of dark matter.
So, what is this 'dark matter' for those who consider the observations point to lots of non-baryonic mass? Well, the observations don't constrain things much - beyond saying it is collisionless and massive. Some particle physicists are happy to tweak their post-Standard Model theories and suggest all manner of particles as the components of DM - axions, LSSPs, and more. In these models, the dark matter would have 'frozen out' of the expanding universe very early, and interacted only gravitationally ever since. Others have suggested exotica such as primordial black hole pairs (the mass of atoms?), even 'particles' that are millions of light-years in size.
AFAIK, there are only two sets of observations which lead some to postulate 'dark energy', the light curves of distant supernovae and combined cosmological observations (CMBR, large-scale structure, primordial nuclide abundances, and maybe more) - these last lead to 'dark energy' only through models (basically, you need dark energy in the models for them to match observations).
As with dark matter, there are some (including me) who feel that the data aren't well enough established yet to make a compelling case for DE; in particular, the SN data needs another 5+ years of analysis for some of us to be comfortable (oh, and a lot more SN data would help a great deal too

).
For theories, well, take your pick - cosmological constant, quintessence, and probably much more (IMHO, when data don't constrain theories much, creative theoreticians quickly come up with half a dozen good theories ... and that's just before breakfast!) marcus probably has a much better picture of this veritable zoo than I do. (Please don't misunderstand me; these theories are to be welcomed, they are an essential part of science).