Are These Statements Equivalent to the Negation of a Bounded Sequence?

  • Context: MHB 
  • Thread starter Thread starter Mathick
  • Start date Start date
  • Tags Tags
    Equivalence
Click For Summary
SUMMARY

The discussion centers on the negation of the statement 'The sequence $(x_n)$ is bounded'. The correct negation is expressed as 'For all $C > 0$, there exists an index $n \in \mathbb{N}$ such that $\left| x_n \right| > C$'. Statements (b) and (d) are equivalent to this negation, while statements (a) and (c) are not. The participants clarify that the difference between the statements hinges on the strict inequality versus the non-strict inequality.

PREREQUISITES
  • Understanding of bounded sequences in mathematical analysis.
  • Familiarity with quantifiers in logic, specifically universal and existential quantifiers.
  • Knowledge of inequalities and their implications in mathematical proofs.
  • Basic understanding of sequences and their properties in real analysis.
NEXT STEPS
  • Study the properties of bounded sequences in real analysis.
  • Learn about the implications of quantifiers in mathematical logic.
  • Explore the differences between strict and non-strict inequalities in proofs.
  • Investigate the concept of subsequences and their relationship to boundedness.
USEFUL FOR

Mathematics students, educators, and anyone interested in the properties of sequences and their implications in analysis and logic.

Mathick
Messages
23
Reaction score
0
Let $A$ be the statement 'The sequence $(x_n)$ is bounded'. Use your mathematical intuition to decide which of the following statements are equivalent to $notA$. You don't need to give a justification.

(a) There exists $C > 0$ such that $\left| x_n \right| > C$ for some $n \in \Bbb{N}$.
(b) For all $C > 0$ there exists an index $n \in \Bbb{N}$ such that $\left| x_n \right| \ge C$.
(c) For infinitely many $n \in \Bbb{N}$ we have $\left| x_n \right| \ge n$.
(d) For all $C > 0$ there exist infinitely many terms of $(x_n)$ with $\left| x_n \right| > C$.

By definition of bounded sequence: $\exists \; C > 0 \quad \forall \; n \in \Bbb{N} \quad \left| x_n \right| \le C$

I know that negation is: $\forall \; C > 0 \quad \exists \; n \in \Bbb{N} \quad \left| x_n \right| > C$

So I think that all these statements are NOT equivalent to $notA$. But I am not sure. Can you help me?
 
Physics news on Phys.org
Mathick said:
By definition of bounded sequence: $\exists \; C > 0 \quad \forall \; n \in \Bbb{N} \quad \left| x_n \right| \le C$

I know that negation is: $\forall \; C > 0 \quad \exists \; n \in \Bbb{N} \quad \left| x_n \right| > C$
How is this different from (b)? If you mean the difference is in $\ge$ vs $>$, then note that your statement of negation obviously implies (b). But suppose (b) holds and you want to prove
\[
\forall C > 0\;\exists n \in \Bbb{N}\; |x_n| > C.\qquad(*)
\]
Fix an arbitrary $C$ and feed $C+1$ to (b) (i.e., replace $C$ in (b) with $C+1$ where $C$ is the value you fixed). It will spit out some $n$ such that $|x_n|\ge C+1$. So $|x_n|>C$ for the same $n$.

It is also trivial that (d) implies (b) and (*). But if (b) holds and you want to prove (d), you fix an arbitrary $C$ and then instantiate the universally quantified $C$ in (b) with $C+1$, $C+2$, $C+3$ and so on. This way you get infinitely many sequence members that exceed $C$.
 
Evgeny.Makarov said:
How is this different from (b)? If you mean the difference is in $\ge$ vs $>$, then note that your statement of negation obviously implies (b). But suppose (b) holds and you want to prove
\[
\forall C > 0\;\exists n \in \Bbb{N}\; |x_n| > C.\qquad(*)
\]
Fix an arbitrary $C$ and feed $C+1$ to (b) (i.e., replace $C$ in (b) with $C+1$ where $C$ is the value you fixed). It will spit out some $n$ such that $|x_n|\ge C+1$. So $|x_n|>C$ for the same $n$.

It is also trivial that (d) implies (b) and (*). But if (b) holds and you want to prove (d), you fix an arbitrary $C$ and then instantiate the universally quantified $C$ in (b) with $C+1$, $C+2$, $C+3$ and so on. This way you get infinitely many sequence members that exceed $C$.
So you claim that (b) and (d) are equivalent to $ notA $ and (a) and (c) are not, don't you?
 
Yes, I do.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K