MHB Are These Statements Equivalent to the Negation of a Bounded Sequence?

  • Thread starter Thread starter Mathick
  • Start date Start date
  • Tags Tags
    Equivalence
Click For Summary
The discussion centers on determining which statements are equivalent to the negation of a bounded sequence, defined as the statement 'The sequence (x_n) is bounded'. The negation is expressed as "for all C > 0, there exists an n such that |x_n| > C." Statements (b) and (d) are shown to imply this negation, while (a) and (c) do not. The reasoning highlights the subtle distinctions between the statements, particularly the differences between "greater than" and "greater than or equal to." Ultimately, it is concluded that (b) and (d) are equivalent to the negation, while (a) and (c) are not.
Mathick
Messages
23
Reaction score
0
Let $A$ be the statement 'The sequence $(x_n)$ is bounded'. Use your mathematical intuition to decide which of the following statements are equivalent to $notA$. You don't need to give a justification.

(a) There exists $C > 0$ such that $\left| x_n \right| > C$ for some $n \in \Bbb{N}$.
(b) For all $C > 0$ there exists an index $n \in \Bbb{N}$ such that $\left| x_n \right| \ge C$.
(c) For infinitely many $n \in \Bbb{N}$ we have $\left| x_n \right| \ge n$.
(d) For all $C > 0$ there exist infinitely many terms of $(x_n)$ with $\left| x_n \right| > C$.

By definition of bounded sequence: $\exists \; C > 0 \quad \forall \; n \in \Bbb{N} \quad \left| x_n \right| \le C$

I know that negation is: $\forall \; C > 0 \quad \exists \; n \in \Bbb{N} \quad \left| x_n \right| > C$

So I think that all these statements are NOT equivalent to $notA$. But I am not sure. Can you help me?
 
Physics news on Phys.org
Mathick said:
By definition of bounded sequence: $\exists \; C > 0 \quad \forall \; n \in \Bbb{N} \quad \left| x_n \right| \le C$

I know that negation is: $\forall \; C > 0 \quad \exists \; n \in \Bbb{N} \quad \left| x_n \right| > C$
How is this different from (b)? If you mean the difference is in $\ge$ vs $>$, then note that your statement of negation obviously implies (b). But suppose (b) holds and you want to prove
\[
\forall C > 0\;\exists n \in \Bbb{N}\; |x_n| > C.\qquad(*)
\]
Fix an arbitrary $C$ and feed $C+1$ to (b) (i.e., replace $C$ in (b) with $C+1$ where $C$ is the value you fixed). It will spit out some $n$ such that $|x_n|\ge C+1$. So $|x_n|>C$ for the same $n$.

It is also trivial that (d) implies (b) and (*). But if (b) holds and you want to prove (d), you fix an arbitrary $C$ and then instantiate the universally quantified $C$ in (b) with $C+1$, $C+2$, $C+3$ and so on. This way you get infinitely many sequence members that exceed $C$.
 
Evgeny.Makarov said:
How is this different from (b)? If you mean the difference is in $\ge$ vs $>$, then note that your statement of negation obviously implies (b). But suppose (b) holds and you want to prove
\[
\forall C > 0\;\exists n \in \Bbb{N}\; |x_n| > C.\qquad(*)
\]
Fix an arbitrary $C$ and feed $C+1$ to (b) (i.e., replace $C$ in (b) with $C+1$ where $C$ is the value you fixed). It will spit out some $n$ such that $|x_n|\ge C+1$. So $|x_n|>C$ for the same $n$.

It is also trivial that (d) implies (b) and (*). But if (b) holds and you want to prove (d), you fix an arbitrary $C$ and then instantiate the universally quantified $C$ in (b) with $C+1$, $C+2$, $C+3$ and so on. This way you get infinitely many sequence members that exceed $C$.
So you claim that (b) and (d) are equivalent to $ notA $ and (a) and (c) are not, don't you?
 
Yes, I do.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K