Are These Statements Equivalent to the Negation of a Bounded Sequence?

  • Context: MHB 
  • Thread starter Thread starter Mathick
  • Start date Start date
  • Tags Tags
    Equivalence
Click For Summary

Discussion Overview

The discussion revolves around the equivalence of various statements to the negation of the assertion that a sequence is bounded. Participants explore different formulations of this negation and their implications within the context of mathematical definitions and logic.

Discussion Character

  • Debate/contested

Main Points Raised

  • Post 1 introduces the statement 'The sequence $(x_n)$ is bounded' and presents four candidate statements for equivalence to its negation, prompting participants to evaluate them without justification.
  • Post 2 clarifies the definition of a bounded sequence and its negation, questioning how statement (b) differs from the negation and suggesting that (b) is implied by the negation.
  • Post 2 further argues that if (b) holds, one can derive the negation by manipulating the value of $C$, indicating a relationship between (b) and the negation.
  • Post 3 reiterates the argument about the relationship between (b) and the negation, asserting that (d) implies both (b) and the negation, while also questioning the equivalence of (a) and (c) to the negation.
  • Post 4 confirms agreement with the assertion that (b) and (d) are equivalent to the negation, while (a) and (c) are not.

Areas of Agreement / Disagreement

Participants express differing views on the equivalence of the statements to the negation of a bounded sequence, with some asserting that (b) and (d) are equivalent to the negation, while (a) and (c) are not. The discussion remains unresolved regarding the overall equivalence of the statements.

Contextual Notes

Participants rely on definitions and logical implications, but the discussion does not resolve the nuances of how each statement relates to the negation of a bounded sequence.

Mathick
Messages
23
Reaction score
0
Let $A$ be the statement 'The sequence $(x_n)$ is bounded'. Use your mathematical intuition to decide which of the following statements are equivalent to $notA$. You don't need to give a justification.

(a) There exists $C > 0$ such that $\left| x_n \right| > C$ for some $n \in \Bbb{N}$.
(b) For all $C > 0$ there exists an index $n \in \Bbb{N}$ such that $\left| x_n \right| \ge C$.
(c) For infinitely many $n \in \Bbb{N}$ we have $\left| x_n \right| \ge n$.
(d) For all $C > 0$ there exist infinitely many terms of $(x_n)$ with $\left| x_n \right| > C$.

By definition of bounded sequence: $\exists \; C > 0 \quad \forall \; n \in \Bbb{N} \quad \left| x_n \right| \le C$

I know that negation is: $\forall \; C > 0 \quad \exists \; n \in \Bbb{N} \quad \left| x_n \right| > C$

So I think that all these statements are NOT equivalent to $notA$. But I am not sure. Can you help me?
 
Physics news on Phys.org
Mathick said:
By definition of bounded sequence: $\exists \; C > 0 \quad \forall \; n \in \Bbb{N} \quad \left| x_n \right| \le C$

I know that negation is: $\forall \; C > 0 \quad \exists \; n \in \Bbb{N} \quad \left| x_n \right| > C$
How is this different from (b)? If you mean the difference is in $\ge$ vs $>$, then note that your statement of negation obviously implies (b). But suppose (b) holds and you want to prove
\[
\forall C > 0\;\exists n \in \Bbb{N}\; |x_n| > C.\qquad(*)
\]
Fix an arbitrary $C$ and feed $C+1$ to (b) (i.e., replace $C$ in (b) with $C+1$ where $C$ is the value you fixed). It will spit out some $n$ such that $|x_n|\ge C+1$. So $|x_n|>C$ for the same $n$.

It is also trivial that (d) implies (b) and (*). But if (b) holds and you want to prove (d), you fix an arbitrary $C$ and then instantiate the universally quantified $C$ in (b) with $C+1$, $C+2$, $C+3$ and so on. This way you get infinitely many sequence members that exceed $C$.
 
Evgeny.Makarov said:
How is this different from (b)? If you mean the difference is in $\ge$ vs $>$, then note that your statement of negation obviously implies (b). But suppose (b) holds and you want to prove
\[
\forall C > 0\;\exists n \in \Bbb{N}\; |x_n| > C.\qquad(*)
\]
Fix an arbitrary $C$ and feed $C+1$ to (b) (i.e., replace $C$ in (b) with $C+1$ where $C$ is the value you fixed). It will spit out some $n$ such that $|x_n|\ge C+1$. So $|x_n|>C$ for the same $n$.

It is also trivial that (d) implies (b) and (*). But if (b) holds and you want to prove (d), you fix an arbitrary $C$ and then instantiate the universally quantified $C$ in (b) with $C+1$, $C+2$, $C+3$ and so on. This way you get infinitely many sequence members that exceed $C$.
So you claim that (b) and (d) are equivalent to $ notA $ and (a) and (c) are not, don't you?
 
Yes, I do.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K