Area of figure, resulting from unit square transformation

Click For Summary
The discussion focuses on determining the area of a figure resulting from applying a linear transformation represented by the matrix A = [1 0; -1 3] to the unit square. Participants clarify that the unit square is defined by its vertices at (0, 0), (1, 0), (1, 1), and (0, 1), not by a matrix. After applying the transformation, the vertices of the resulting parallelogram are identified as (0, 0), (1, -1), (1, 2), and (0, 3). The area of this parallelogram can be calculated, and it is noted that the determinant of the transformation matrix is 3, which directly indicates the area of the transformed figure. Understanding the concept of linear operators in R^2 is crucial for accurately applying transformations to geometric figures.
Myr73
Messages
120
Reaction score
0
1- Let the linear operator on R^2 have the following matrix:A = 1 0
-1 3

What is the area of the figure that results from applying this transformation to the unit square?

2- I am abit confused here, I thought that the matrix for the unit square would be,
0 0
1 0
0 1
1 1...
But apparently that is not it.

And after finding the unit square matrix, I blv I would find the images of it by computing A^Tx

I am not sure though
 
Physics news on Phys.org
A square would be four points. You seem to have collected four points that make up one particular unit square, and arranged them as a 2x4 array. That is kind of odd.

What does it mean to be a linear operator on R^2? What does the operator A operate on? Hint: R^2 means there are two real numbers involved. But there seem to be 8 real numbers involved in your square. So how is that going to work?
 
oh. ok, so are they asking to find the Ax? where x would be the unit square.. so like
[10. ] [ 1 0]
[ 1 3 ] [ 01 ] ...
 
Last edited:
anyone?
 
That matrix is NOT the unit square. The unit square is a geometric figure, not a matrix, that has vertices at (0, 0), (1, 0), (1, 1), and (0, 1).
The bottom side, from (0, 0) to (1, 0), the vector \begin{bmatrix}1 \\ 0 \end{bmatrix}, is mapped into
\begin{bmatrix}1 & 0 \\ -1 & 3\end{bmatrix}\begin{bmatrix}1 \\ 0 \end{bmatrix}= \begin{bmatrix}1 \\ -1\end{bmatrix}

The left side, from (0, 0) to (0, 1), the vector \begin{bmatrix}0 \\ 1 \end{bmatrix}, is mapped into
\begin{bmatrix}1 & 0 \\ -1 & 3 \end{bmatrix}\begin{bmatrix}0 \\ 1 \end{bmatrix}= \begin{bmatrix}0 \\ 3\end{bmatrix}

The other two sides get mapped into equivalent vectors so this is a parallelogram with vertices at (0, 0), (1, -1), (1, 2), and (0, 3).
It should be easy to find the area of that parallelogram.

(And, it is worth noting that this matrix has determinant 3.)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K