MHB Area of the bounded regions between a straight line and a polynomial

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $P$ be a real polynomial of degree five. Assume that the graph of $P$ has three inflection points lying on a straight line. Calculate the ratios of the areas of the bounded regions between this line and the graph of the polynomial $P$.
 
Mathematics news on Phys.org
Let $P = f(x)$ be the polynomial.

Changing coordinates if necessary, we can assume that the middle one of the three inflection points is at the origin. Let the other two inflection points be at $x=-a$ and $x=b$, where $a,b>0$.

Then $f''(x) = kx(x+a)(x-b) = k(x^3 + (a-b)x^2 - abx)$. The value of the constant $k$ does not affect the calculations except to cause clutter, so I will assume that $k=1$. Then $f(x) = \frac1{20}x^5 + \frac1{12}(a-b)x^4 - \frac1{6}abx^3 + cx$ for some constant $c$. (The constant term in $f(x)$ is zero because the curve passes through the point of inflection at the origin.)

Next, $f(-a) = -\frac1{20}a^5 + \frac1{12}(a-b)a^4 + \frac1{6}a^4b - ca = \frac1{30}a^5 + \frac1{12}a^4b - ac$, and similarly $f(b) = -\frac1{30}b^5 - \frac1{12}a^4b + bc$. But the points $(-a,f(-a))$ and $(b,f(b))$ lie on a straight line through the origin. Therefore $\dfrac{f(-a)}{-a} = \dfrac{f(b)}b$, so that $\frac1{30}a^5 + \frac1{12}a^4b = \frac1{30}b^5 + \frac1{12}a^4b,$ which simplifies to $(b^2 - a^2)(12a^2 + 30ab + 12b^2) = 0.$ Since the second term in that product is positive, it follows that $b^2 - a^2=0$ and so $b=a$. Therefore $f(x) = \frac1{20}x^5 - \frac1{6}a^2x^3 + cx$.

[TIKZ][scale=3]\draw [help lines, ->] (-1.75,0) -- (1.75,0) ;
\draw [help lines, ->] (0,-1) -- (0,1) ;
\draw [help lines] (-1,0) -- (-1,0.5) ;
\draw [help lines] (1,-0.5) -- (1,0) ;
\draw[ domain=-1.75:1.75, samples=100] plot (\x,0.6*\x^5 - 2*\x^3 + \x);
\draw (-1.75, 0.7) -- (1.75,-0.7) ;
\draw (-1,-0.1) node {$-a$} ;
\draw (1,0.1) node {$a$} ;
\draw (-1.3,0.7) node {$\color{red}A$} ;
\draw (-0.5,0) node {$\color{red}B$} ;
\draw (0.5,0) node {$\color{red}C$} ;
\draw (1.3,-0.7) node {$\color{red}D$} ;[/TIKZ]

The difference between the quintic polynomial and the straight line is $\frac1{60}x(3x^4 - 10a^2x^2 + 7a^4) = \frac1{60}x(x^2-a^2)(3x^2 - 7a^2)$. The points of intersection are at $x = \pm a$ and $x = \pm\sqrt{\frac73}a$. Integrating over the appropriate intervals, I found the ratios of the areas $A:B:C:{D}$ to be $32:81:81:32$. But my arithmetic is unreliable, so please check those numbers.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
8
Views
2K
Replies
20
Views
2K
Replies
4
Views
2K
Back
Top