Area of the bounded regions between a straight line and a polynomial

Click For Summary
SUMMARY

The discussion focuses on calculating the ratios of the areas of the bounded regions between a straight line and a real polynomial of degree five, denoted as $P$. It is established that the graph of $P$ has three inflection points that lie on the straight line. The mathematical approach involves integrating the polynomial function and applying the properties of inflection points to determine the area ratios accurately.

PREREQUISITES
  • Understanding of polynomial functions, specifically degree five polynomials.
  • Knowledge of calculus, particularly integration techniques for area calculation.
  • Familiarity with the concept of inflection points in graph analysis.
  • Basic principles of ratio and proportion in mathematical contexts.
NEXT STEPS
  • Study polynomial function properties, focusing on degree five characteristics.
  • Learn advanced integration techniques for calculating areas under curves.
  • Explore the significance of inflection points in determining graph behavior.
  • Investigate ratio and proportion applications in geometry and calculus.
USEFUL FOR

Mathematicians, calculus students, and educators looking to deepen their understanding of polynomial behavior and area calculations between curves.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $P$ be a real polynomial of degree five. Assume that the graph of $P$ has three inflection points lying on a straight line. Calculate the ratios of the areas of the bounded regions between this line and the graph of the polynomial $P$.
 
Physics news on Phys.org
Let $P = f(x)$ be the polynomial.

Changing coordinates if necessary, we can assume that the middle one of the three inflection points is at the origin. Let the other two inflection points be at $x=-a$ and $x=b$, where $a,b>0$.

Then $f''(x) = kx(x+a)(x-b) = k(x^3 + (a-b)x^2 - abx)$. The value of the constant $k$ does not affect the calculations except to cause clutter, so I will assume that $k=1$. Then $f(x) = \frac1{20}x^5 + \frac1{12}(a-b)x^4 - \frac1{6}abx^3 + cx$ for some constant $c$. (The constant term in $f(x)$ is zero because the curve passes through the point of inflection at the origin.)

Next, $f(-a) = -\frac1{20}a^5 + \frac1{12}(a-b)a^4 + \frac1{6}a^4b - ca = \frac1{30}a^5 + \frac1{12}a^4b - ac$, and similarly $f(b) = -\frac1{30}b^5 - \frac1{12}a^4b + bc$. But the points $(-a,f(-a))$ and $(b,f(b))$ lie on a straight line through the origin. Therefore $\dfrac{f(-a)}{-a} = \dfrac{f(b)}b$, so that $\frac1{30}a^5 + \frac1{12}a^4b = \frac1{30}b^5 + \frac1{12}a^4b,$ which simplifies to $(b^2 - a^2)(12a^2 + 30ab + 12b^2) = 0.$ Since the second term in that product is positive, it follows that $b^2 - a^2=0$ and so $b=a$. Therefore $f(x) = \frac1{20}x^5 - \frac1{6}a^2x^3 + cx$.

[TIKZ][scale=3]\draw [help lines, ->] (-1.75,0) -- (1.75,0) ;
\draw [help lines, ->] (0,-1) -- (0,1) ;
\draw [help lines] (-1,0) -- (-1,0.5) ;
\draw [help lines] (1,-0.5) -- (1,0) ;
\draw[ domain=-1.75:1.75, samples=100] plot (\x,0.6*\x^5 - 2*\x^3 + \x);
\draw (-1.75, 0.7) -- (1.75,-0.7) ;
\draw (-1,-0.1) node {$-a$} ;
\draw (1,0.1) node {$a$} ;
\draw (-1.3,0.7) node {$\color{red}A$} ;
\draw (-0.5,0) node {$\color{red}B$} ;
\draw (0.5,0) node {$\color{red}C$} ;
\draw (1.3,-0.7) node {$\color{red}D$} ;[/TIKZ]

The difference between the quintic polynomial and the straight line is $\frac1{60}x(3x^4 - 10a^2x^2 + 7a^4) = \frac1{60}x(x^2-a^2)(3x^2 - 7a^2)$. The points of intersection are at $x = \pm a$ and $x = \pm\sqrt{\frac73}a$. Integrating over the appropriate intervals, I found the ratios of the areas $A:B:C:{D}$ to be $32:81:81:32$. But my arithmetic is unreliable, so please check those numbers.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K