MHB Arrange 4-Gon Figures: Find Descendants w/o Descendants

  • Thread starter Thread starter roni1
  • Start date Start date
roni1
Messages
20
Reaction score
0
If I arrange the 4-gon polygon by order as:
a rectangle is a descendant of parallelogram and a square is a descendant of rectangle.
What are the descendant that no have any descendants (in 4-gon figures)?
 
Mathematics news on Phys.org
What are the rules for determining descendants?
 
the property that the figure has like the father but you can say that the son have but so "fathers" (let call them father brothers) haven't.

square is the son of rectangle.

Not every rectangle can be a square,
But every square is a rectangle.
O.K.
The square is the son and the rectangle is the father. The brothers of the rectangle are rectangle that are not square.
 
Then I'd say a square is what your looking for; a square can only be a square.
 
roni said:
If I arrange the 4-gon polygon by order as:
a rectangle is a descendant of parallelogram and a square is a descendant of rectangle.
What are the descendant that no have any descendants (in 4-gon figures)?

Hi roni.

The mathematical term for what you call “descendants” is subsets. Thus, the set of all rectangles is a subset of the set of all parallelograms, and the set of all squares is a subset of the set of all rectangles.

The subset you’re looking for is the set of all squares because the square is the “most symmetrical” of all quadrilaterals – in the sense that its symmetry group has order 8 and no other quadrilateral has a symmetry group of the same or higher order.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top