MHB Arran's question at Yahoo Answers (linear system)

Click For Summary
To solve the coupled differential equations dx/dt=x+4y and dy/dt=-5x+5y, the system can be represented using a matrix A with complex eigenvalues 3±4i. The matrix A is diagonalizable in the complex field, allowing for the calculation of eigenvectors associated with each eigenvalue. The solution involves using the exponential matrix e^(tA), which can be computed using the eigenvectors and eigenvalues. The general solution for the system is expressed in terms of the matrix exponential and constants C1 and C2. This method provides a comprehensive approach to solving systems with complex eigenvalues.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

I'm trying to solve the coupled differential equations: dx/dt=x+4y and dy/dt=-5x+5y, but if you put the coefficients of x and y into a matrix, it gives complex Eigenvalues. So how do I solve the equations? Thanks for your help.

Here is a link to the question:

How do you solve a pair of coupled differential equations where the matrix of coeffs has complex Eigenvalues? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Arran,

The system can be written as $$\begin{bmatrix}{x'}\\{y'}\end{bmatrix}=A \begin{bmatrix}{x}\\{y}\end{bmatrix}\mbox{ with } A=\begin{bmatrix}{\;\;1}&{4}\\{-5}&{5}\end{bmatrix}$$
The eigenvalues of $A$ are $3\pm 4i$ (simple) so, $A$ is diagonalizable on $\mathbb{C}$. Now find an eigenvector $v_1$ associated to $3+4i$ and another one $v_2$ associated to $3-4i$. If $P=[v_1\;\;v_2]$ then, $$P^{-1}AP=D=\begin{bmatrix}{3+4i}&{0}\\{0}&{3-4i}\end{bmatrix}$$ The exponential matrix of $A$ is $e^{tA}=Pe^{tD}P^{-1}$. The general solution of the system is $$\begin{bmatrix}{x}\\{y}\end{bmatrix}=e^{tA} \begin{bmatrix}{C_1}\\{C_2}\end{bmatrix}\quad (C_1,C_2\in\mathbb{R})$$

P.S. Here you can test your result for $e^{tA}$

MatrixExp ({{t,4t},{-5t,5t}}) - Wolfram|Alpha
 
Last edited by a moderator:

Similar threads

Replies
1
Views
3K
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K