MHB [ASK] polynomial f(x) divided by (x - 1)

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Polynomial
Click For Summary
The polynomial f(x) = 2x^3 - 5x^2 + ax + 18 is divisible by (x - 3), leading to the conclusion that a must equal -9. When substituting a into f(x), the polynomial becomes 2x^3 - 5x^2 - 9x + 18. Dividing this by (x - 1) results in a quotient of 2x^2 - 3x - 12 with a remainder of 6, indicating that f(x) is not divisible by (x - 1). The discussion highlights a potential error in the original question, as the expected results do not align with the calculations performed.
Monoxdifly
MHB
Messages
288
Reaction score
0
A polynomial f(x) = [math]2x^3-5x^2+ax+18[/math] is divisible by (x - 3). The result of that polynomial f(x) divided by (x - 1) is ...
A. [math]2x^2-7x+2[/math]
B. [math]2x^2+7x-2[/math]
C. [math]2x^2-7x-2[/math]
D. [math]x^2-6x-2[/math]
E. [math]x^2-6x+3[/math]

I got a + 3 = -6 and so a = -9 and f(x) = [math]2x^3-5x^2-9x+18[/math], but when I divided it with x - 1 I got [math]x^2-3x+6[/math] with the remainder 24. I'm quite sure that the question isn't wrong since it's in a national level exam, but where did I go wrong?
 
Mathematics news on Phys.org
Monoxdifly said:
A polynomial f(x) = [math]2x^3-5x^2+ax+18[/math] is divisible by (x - 3).

If a polynomial is divisible by $(x-k)$, then $f(k) = 0$

$f(3) = 0 \implies a = -9 \implies f(1) = 6$

$f(1) \ne 0 \implies f(x)$ is not divisible by $(x-1)$.

My opinion is there is an error in the question somewhere.
 
Synthetic Division does some useful things.

Code:
3 |  2  -5    a       18
         6    3     3a + 9
-------------------------
     2   1  a+3      3a+27 = 0 ==> a = -9

1 |  2  -5    -9      18
         2    -3     -12
-------------------------
     2  -3   -12      6

And thus we see: $2x^{2} - 3x - 12 + \dfrac{6}{x-1}$

How did you get only x^2, instead of 2x^2? Something wrong there.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K