MHB [ASK} Prove (cos2x+cos2y)/(sin2x−sin2y)=1/tan(x−y)

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
AI Thread Summary
To prove the equation (cos2x + cos2y) / (sin2x - sin2y) = 1 / tan(x - y), one can start with the left-hand side using trigonometric identities. By applying the sum-to-product identities for cosine and sine, the expression simplifies to (cos(x - y) / sin(x - y)). This further reduces to cot(x - y), which is equivalent to 1 / tan(x - y). The proof can be completed in just four steps, demonstrating the equality effectively.
Monoxdifly
MHB
Messages
288
Reaction score
0
Prove that $$\frac{cos2x+cos2y}{sin2x-sin2y}=\frac1{tan(x-y)}$$. Can someone provide me some hints? I tried to manipulate the right-hand expression but got back to square one.
 
Mathematics news on Phys.org
Monoxdifly said:
Prove that $$\frac{cos2x+cos2y}{sin2x-sin2y}=\frac1{tan(x-y)}$$. Can someone provide me some hints? I tried to manipulate the right-hand expression but got back to square one.

Hi Monoxdifly,

You could start with the LHS and the identities:

\begin{align*}
\cos a + \cos b &= 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}\\
\sin a - \sin b &= 2\sin\frac{a-b}{2}\cos\frac{a+b}{2}
\end{align*}
 
castor28 said:
Hi Monoxdifly,

You could start with the LHS and the identities:

\begin{align*}
\cos a + \cos b &= 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}\\
\sin a - \sin b &= 2\sin\frac{a-b}{2}\cos\frac{a+b}{2}
\end{align*}

Ah, let's see...
$$\frac{cos2x+cos2y}{sin2x-sin2y}$$=$$\frac{2cos\frac{2x+2y}{2}cos\frac{2x-2y}{2}}{2sin\frac{2x-2y}{2}cos\frac{2x+2y}{2}}$$=$$\frac{cos(x-y)}{sin(x-y)}$$= cot(x - y) = $$\frac1{tan(x-y)}$$
Wew. Just 4 steps.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top