- #1

- 428

- 23

## Main Question or Discussion Point

Hi,

The violation of Bell's inequality says that quantum mechanics can't be both local and realistic. Let's assume it is realistic but non-local. How does this explain the fact that a single particle can be in a superposition that collapses to a particular state when measured? Since we only consider a single particle at a single location I can't see how non-locality could be useful here.

To put it differently, I don't quite understand what the violation of Bell's inequality implies (if anything) if we don't look at entangled states.

The violation of Bell's inequality says that quantum mechanics can't be both local and realistic. Let's assume it is realistic but non-local. How does this explain the fact that a single particle can be in a superposition that collapses to a particular state when measured? Since we only consider a single particle at a single location I can't see how non-locality could be useful here.

To put it differently, I don't quite understand what the violation of Bell's inequality implies (if anything) if we don't look at entangled states.