MHB Automorphisms, Galois Groups & Splitting Fields

Click For Summary
The discussion focuses on finding the splitting field and Galois group for the polynomial f(x) = x^4 - 2x^2 + 9 over the rational numbers. The polynomial is determined to be irreducible over ℚ, leading to a splitting field of degree 4, denoted as E, which is Galois. The Galois group, identified as the Klein 4-group, is formed by automorphisms of order 2 that fix the subfield ℚ(√2). Additionally, a related polynomial x^4 + x^3 + x^2 + x + 1 is discussed, with its splitting field being ℚ(ζ_5), where ζ_5 is a primitive fifth root of unity, and its Galois group is cyclic of order 4. The conversation emphasizes the irreducibility of polynomials and the structure of their Galois groups.
mathjam0990
Messages
28
Reaction score
0
Let f(x)=x4-2x2+9
Find the splitting field and Galois group for f(x) over ℚ

Here is what I have written out so far. If I have found the splitting field E correctly, have I proceeded with the Gal(E/F) group correctly?

Also, how would I go about finding the roots of this equation by hand without a calculator?

If anyone could help me out with the answer and a detailed explanation to follow that would be very helpful. Thank you.

View attachment 5498
 

Attachments

  • ab alg.jpg
    ab alg.jpg
    67.4 KB · Views: 109
Physics news on Phys.org
OK, you've found the roots, that's good.

To know the degree of the splitting field over $\Bbb Q$, we need to know if $h(x)$ is irreducible over $\Bbb Q$.

We know that $h(x)$ has no linear factors in $\Bbb Q[x]$ (since none of the roots are rational), and thus also no rational cubic factors. Does it have any quadratic factors in $\Bbb Q[x]$?

If $h(x) = (x^2 + ax + b)(x^2 + cx + d)$ we have:

$a+c = 0$
$ac + b + d = -2$
$ad + bc = 0$
$bd = 9$.

So $c = -a$, and the third equation becomes $a(d - b) = 0$. Thus either $a = 0$, or $b = d$.

If $a = c = 0$, then the second equation is $b+d = -2$. Since $d = \dfrac{9}{b}$, we get:

$b + \dfrac{9}{b} = -2$, that is:

$b^2 - 2b + 9 = 0$. Checking the discriminant: $4 - 36 = -32 < 0$, we see this has no real, thus no rational, solutions.

Thus $b = \pm 3$. Substituting back in equation 2, either:

$-a^2 - 6 = -2 \implies a^2 = -4$ (for $b = -3$) , this is impossible;

$-a^2 + 6 = -2 \implies a^2 = 8$ (for $b = 3$), which has no rational solution, as $8$ is not a perfect square.

So we conclude that $h(x)$ is indeed irreducible, as its roots are all distinct it is separable, so the splitting field has degree $4 = \text{deg }h$ over $\Bbb Q$.

As this splitting field (let's call it $E$) is Galois (being a splitting field), we see that $|\text{Gal}(E/\Bbb Q)| = 4$.

So we are looking for a group of automorphisms of $E$, that fix $\Bbb Q$, of order $4$.

Now it should be clear that $E \subseteq \Bbb Q(\sqrt{2},i)$, since the roots of $h$ are contained in the latter field.

Furthermore, by factoring $h$ over the reals, we see that:

$h(x) = (x^2 + 2\sqrt{2}x + 3)(x^2 - 2\sqrt{2}x + 3)$.

Since $i \not\in \Bbb Q(\sqrt{2})$, and $i$ is a root of $x^2 + 1 \in \Bbb Q(\sqrt{2})[x]$, we see that:

$[\Bbb Q(\sqrt{2},i):\Bbb Q(\sqrt{2})] = 2$, and clearly $[\Bbb Q(\sqrt{2}:\Bbb Q] = 2$, thus:

$[\Bbb Q(\sqrt{2},i):\Bbb Q] = [\Bbb Q(\sqrt{2},i):\Bbb Q(\sqrt{2})][\Bbb Q(\sqrt{2}:\Bbb Q] = 4$.

Since $[E:\Bbb Q] = 4$, as well, we see that $\Bbb Q(\sqrt{2},i)$ *is* $E$.

Complex-conjugation clearly gives us an element of $\text{Gal}(E/\Bbb Q)$ of order $2$ which fixes the subfield $\Bbb Q(\sqrt{2})$.

The map: $\sqrt{2} \mapsto -\sqrt{2}, i \mapsto i$ also gives us an automorphism of order 2, so we conclude the Galois group is the Klein 4-group.

As far as "finding the roots by hand", since $h(x)$ is a bi-quadratic (a quadratic in $x^2$), it's really pretty easy:

Solve $y^2 - 2x + 9$ for $y$ by using the quadratic formula.

Sub $x^2$ in for $y$, and then solve the resulting two quadratics (you'll need to know how to take the square root of a complex number),

OR: solve the two (real) quadratics I found up above.
 
Very helpful information, thank you!...if I could ask one more question, say we have the polynomial x4+x3+x2+x+1 and we wanted to find a splitting field over ℚ. Could we approach this by recognizing that this is the minimum polynomial of Φ5(x) thus root ϑ = e2πi/5. So the minimum polynomial is (x-ϑ)(x-ϑ2)(x-ϑ3)(x-ϑ4) and because ϑ↦ϑk for k=1,2,3,4 then E = ℚ[e2πi/5] ? Thank you.
 
The phrase "minimum polynomial of $\Phi_5(x)$" makes no sense. It *is* the minimal polynomial of $e^{2\pi i/5}$, and the reason is that $\Phi_n(x)$ is irreducible for every $n \in \Bbb Z^+$. It's a non-trivial proof to show this for arbitrary $n$, but you can use a clever substitution to show it for $n = p$, a prime, so that you can apply the Eisenstein Criterion.

And yes, the splitting field is indeed $\Bbb Q(\zeta_5)$, where $\zeta_5 = e^{2\pi i/5}$ (the other roots are all powers of $\zeta_5$-in fact, the powers of $\zeta_5$ (including $1$) are a cyclic group of order 5, and the Galois group of $x^4 + x^3 + x^2 + x + 1$ is a cyclic group of order $4$, generated by the automorphism:

$\sigma:\zeta_5 \mapsto (\zeta_5)^2$

($\zeta_5 \mapsto (\zeta_5)^3$ also works).

Interestingly enough, since $\text{Gal}(\Bbb Q(\zeta_5)/\Bbb Q) \cong \Bbb Z_4$, it has a unique subgroup of order 2, and thus we have a unique subfield of $\Bbb Q(\zeta_5)$ of degree (dimension) 2 over the rationals.

Can you guess what this field might be? (Here is a helpful hint: $\sigma^2$ is complex-conjugation restricted to $\Bbb Q(\zeta_5)$, so how would you find real quadratic factors of $x^4 + x^3 + x^2 + x + 1$?).
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
1
Views
1K
  • · Replies 26 ·
Replies
26
Views
811
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K