OK, according to the derivation (
http://en.wikipedia.org/wiki/Bell's_theorem#Derivation_of_CHSH_inequality)
##A=A(a, \lambda), A'=A(a', \lambda), B=B(b, \lambda), B'=B(b', \lambda)##
##\begin{align}
\rho(a,b) + \rho(a,b') + \rho(a',b) - \rho(a',b')&= \int_\Lambda AB\rho +\int_\Lambda AB'\rho +\int_\Lambda A'B\rho -\int_\Lambda A'B'\rho \\
&= \int_\Lambda (AB+AB'+A'B-A'B')\rho\\
&= \int_\Lambda (A(B+B') + A'(B-B')) \rho\\
&\leq 2
\end{align}##
The heart of the derivation is the 4th line above:
##AB+AB'+A'B-A'B'= A(B+B')+A'(B-B') \le 2.##
That factorization can not be done for different realizations of the same ensemble
Alternatively, For a single set ##q## of N particle pairs, with N sufficiently large
##S_q = \frac{1}{N} \sum_{i=1}^{N} A(a,\lambda_i)B(b,\lambda_i) - \frac{1}{N} \sum_{i=1}^{N} A(a,\lambda_i)B(b',\lambda_i) + \frac{1}{N} \sum_{i=1}^{N} A(a',\lambda_i)B(b,\lambda_i) + \frac{1}{N} \sum_{i=1}^{N} A(a',\lambda_i)B(b',\lambda_i)##
Which I can easily factorize like
##S_p = \frac{1}{N} \sum_{i=1}^{N} (A(a,\lambda_i)[B(b,\lambda_i) - B(b',\lambda_i)] + A(a',\lambda_i)[B(b,\lambda_i) + B(b',\lambda_i)])##
##A, B## can only take values ##\pm 1##, therefore whenever ##B(b,\lambda_i) - B(b',\lambda_i)## is 2, ##B(b,\lambda_i) + B(b',\lambda_i)## must be 0. The possible values within the sum are -2, 0, 2. Therefore ## |S_p| \le 2##
For a 4 different sets ##r,s,t,u## of M,N,O,P particle pairs respectively, you instead have:
##S_{rstu} = \frac{1}{M} \sum_{i=1}^{M} A(a,\lambda_i)B(b,\lambda_i) - \frac{1}{N} \sum_{j=1}^{N} A(a,\lambda_j)B(b',\lambda_j) + \frac{1}{O} \sum_{k=1}^{O} A(a',\lambda_k)B(b,\lambda_k) + \frac{1}{P} \sum_{l=l}^{P} A(a',\lambda_l)B(b',\lambda_l)##
Which we can't factorize any further. In addition, Each of terms can independently attain the extrema of [-1, +1]. Therefore ##|S_{rstu}| \le 4##.