# A Conjugate variables in the Fourier and Legendre transforms

#### redtree

In quantum mechanics, position $\textbf{r}$ and momentum $\textbf{p}$ are conjugate variables given their relationship via the Fourier transform. In transforming via the Legendre transform between Lagrangian and Hamiltonian mechanics, where $f^*(\textbf{x}^*)=\sup[\langle \textbf{x}, \textbf{x}^*\rangle - f(\textbf{x}) ]$, $\textbf{x}$ and $\textbf{x}^*$ are Legendre conjugates. Furthermore, $\textbf{x}^*$ is often described as the slope of the tangent line at $f(\textbf{x})$.

In physics, the conjugate relationship between $\textbf{r}$ and $\textbf{p}$ is considered equivalent to the conjugate relationship $\textbf{x}$ and $\textbf{x}^*$ such that for the Legendre transform between the Lagrangian and the Hamiltonian $\textbf{r}$ and $\textbf{p}$ are used in place of $\textbf{x}$ and $\textbf{x}^*$. To me at least, this equivalence is not at all obvious.

What is the mathematical basis for this substitution?

In other words, are both the following true for the same variables, and if so, under what conditions?
$\mathscr{F}[g(\textbf{r})]=G(\textbf{p})$
And
$f^*(\textbf{r})=\sup[\langle \textbf{r}, \textbf{p}\rangle - f(\textbf{p}) ]$

Related Quantum Physics News on Phys.org

#### redtree

Please ignore the post. I see a mistake.

"Conjugate variables in the Fourier and Legendre transforms"

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving