billschnieder
- 808
- 10
So then what was Bell complaining about the nontriviality of additivity of expectation values?bhobba said:Well spotted - I didn't even notice it.kith said:Expectation values always commute because they are numbers, so your math is messed up.
Bell said:The essential assumption can be criticized as follows. At first sight, the required additivity of expectation values seems very reasonable, and is rather the non-additivity of allowed values (eigenvalues) which requires explanation. Of course the explanation is well known: A measurement of a sum of noncommuting observables cannot be made by combining trivially the results of separate observations on the two[individual] terms -- it requires a quite distict experiment. ... But this explanation of the non-additivity of allowed values also establishes the nontriviality of the additivity of expectation values
That is why I said earlier:
Starting from
##E_\psi(x,z) = \langle\psi|(\sigma_L\cdot x)(\sigma_R\cdot z)|\psi\rangle = -x\cdot{z} ##
##S^{\psi} = |\langle\psi|(\sigma_L\cdot{a})(\sigma_R\cdot{b}) - (\sigma_L\cdot{a})(\sigma_R\cdot{b'}) + (\sigma_L\cdot{a'})(\sigma_R\cdot{b}) + (\sigma_L\cdot{a'})(\sigma_R\cdot{b'})|\psi\rangle|##
Do all those spin observables commute?