MHB -b.2.1.5 Find the general solution of y' - 2y =3te^t,

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
\nmh{895}
Find the general solution of the given differential equation
$\displaystyle y^\prime - 2y =3te^t, \\$

Obtain $u(t)$
$\displaystyle u(t)=\exp\int -2 \, dx =e^{-2t} \\$
Multiply thru with $e^{-2t}$
$e^{-2t}y^\prime + 2e^{-2t}y= 3te^{-t} \\$
Simplify:
$(e^{-2t}y)'= 3te^{-t} \\$
Integrate:
$\displaystyle e^{-2t}y=\int 3te^{-t} dt =-3e^{-t}(t+1)+c_1 \\$
{Divide by $e^{-2t}$
$y=-3e^t t - 3e^{-t} +c_1 e^t \\$
Answer from textbook
$y=\color{red}{c_1 e^{2t}-3e^t}$

ok sumtum went wrong somewhere?

$$\tiny\color{blue}{\textbf{Text book: Elementary Differential Equations and Boundary Value Problems}}$$
 
Last edited:
Physics news on Phys.org
I with you up to after the integration:

$$e^{-2t}y=-3e^{-t}(t+1)+c_1$$

Thus:

$$y(t)=-3e^{t}(t+1)+c_1e^{2t}$$

The solution given by the book is incorrect.
 
these problems require mega being carefull!
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Replies
3
Views
2K
Replies
7
Views
4K
Replies
9
Views
5K
Replies
2
Views
1K
Replies
11
Views
1K
Replies
7
Views
3K
Replies
7
Views
3K
Back
Top