- #1
Karol
- 1,380
- 22
Homework Statement
A rod of length L hangs on a nail. a ball of mass m hits and sticks to it. the rod rotates to angle θ.
What is the velocity of the ball and what's the loss of energy.
Homework Equations
Kinetic energy of a rigid body: ##E=\frac{1}{2}I\omega^2##
Angular momentum: ##I\omega##
The Attempt at a Solution
Location of C.O.M:
$$x_{c.m.}=\frac{mL+M\frac{L}{2}}{m+M}=\frac{L}{m+M}\left( m+\frac{M}{2} \right)$$
The potential energy at the inclined position, the final position:
$$E_f=(m+M)g\cdot y_{c.m.}=(m+M)\frac{L}{m+M}\left( m+\frac{M}{2} \right)g\cos\alpha=Lg\left( m+\frac{M}{2} \right)\cos\alpha$$
Ef equals the kinetic energy after the hit:
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)\cos\alpha=(mL^2+\frac{1}{3}ML^2)\omega^2\Rightarrow \omega^2=\frac{g\left( m+\frac{M}{2} \right)\cos\alpha}{L\left( m+\frac{1}{3}M \right)}$$
Conservation of angular momentum:
$$mvL=I\omega \Rightarrow mvL=\left( mL^2+\frac{1}{3} ML^2 \right) \omega$$
$$\Rightarrow v=\frac{ L\left( m+\frac{1}{3}M \right) \omega }{m}=\sqrt{Lg\left( m+\frac{1}{3}M \right)\left(m+\frac{M}{2} \right) }$$
$$\Delta E=Lg\left( m+\frac{M}{2} \right)\cos\alpha-\frac{1}{2}mv^2=Lg\left( m+\frac{M}{2} \right) \left[ \cos\alpha-\frac{1}{2m}\left( m+\frac{1}{3}M\right) \right]$$
Is it true?