Ball hitting a hanging rod: Velocity and Energy Loss Analysis

  • Thread starter Karol
  • Start date
  • Tags
    Ball Rod
In summary: I am sorry for the mistakes, here is the summary:In summary, a rod of length L hangs on a nail and a ball of mass m hits and sticks to it, causing the rod to rotate to an angle θ. The velocity of the ball can be calculated using the equations for kinetic energy and angular momentum of a rigid body. The loss of energy can be determined by comparing the potential energy at the inclined position to the kinetic energy after the hit. The equations for potential energy and kinetic energy after the hit involve the mass of the rod (M), the mass of the ball (m), the length of the rod (L), the acceleration due to gravity (g), and the angle of rotation (α). It
  • #1
Karol
1,380
22

Homework Statement


A rod of length L hangs on a nail. a ball of mass m hits and sticks to it. the rod rotates to angle θ.
What is the velocity of the ball and what's the loss of energy.

Homework Equations


Kinetic energy of a rigid body: ##E=\frac{1}{2}I\omega^2##
Angular momentum: ##I\omega##

The Attempt at a Solution


Location of C.O.M:
$$x_{c.m.}=\frac{mL+M\frac{L}{2}}{m+M}=\frac{L}{m+M}\left( m+\frac{M}{2} \right)$$
The potential energy at the inclined position, the final position:
$$E_f=(m+M)g\cdot y_{c.m.}=(m+M)\frac{L}{m+M}\left( m+\frac{M}{2} \right)g\cos\alpha=Lg\left( m+\frac{M}{2} \right)\cos\alpha$$
Ef equals the kinetic energy after the hit:
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)\cos\alpha=(mL^2+\frac{1}{3}ML^2)\omega^2\Rightarrow \omega^2=\frac{g\left( m+\frac{M}{2} \right)\cos\alpha}{L\left( m+\frac{1}{3}M \right)}$$
Conservation of angular momentum:
$$mvL=I\omega \Rightarrow mvL=\left( mL^2+\frac{1}{3} ML^2 \right) \omega$$
$$\Rightarrow v=\frac{ L\left( m+\frac{1}{3}M \right) \omega }{m}=\sqrt{Lg\left( m+\frac{1}{3}M \right)\left(m+\frac{M}{2} \right) }$$
$$\Delta E=Lg\left( m+\frac{M}{2} \right)\cos\alpha-\frac{1}{2}mv^2=Lg\left( m+\frac{M}{2} \right) \left[ \cos\alpha-\frac{1}{2m}\left( m+\frac{1}{3}M\right) \right]$$
Is it true?
 

Attachments

  • Snap1.jpg
    Snap1.jpg
    2.7 KB · Views: 457
Physics news on Phys.org
  • #2
What baseline are you taking for the PE? As theta (alpha) increases, does the PE increase or decrease?
 
  • #3
$$E_f=(m+M)g\cdot y_{c.m.}=(m+M)\frac{L}{m+M}\left( m+\frac{M}{2} \right)g(1-\cos\alpha)=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)$$
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)=(mL^2+\frac{1}{3}ML^2)\omega^2\Rightarrow \omega^2=\frac{g\left( m+\frac{M}{2} \right)(1-\cos\alpha)}{L\left( m+\frac{1}{3}M \right)}$$
$$v=\frac{ L\left( m+\frac{1}{3}M \right) \omega }{m}=\sqrt{Lg\left( m+\frac{1}{3}M \right)\left(m+\frac{M}{2} \right)(1-\cos\alpha) }$$
$$\Delta E=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)-\frac{1}{2}mv^2=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha) \left[1-\frac{m}{2}\left( m+\frac{M}{3}\right) \right]$$
 
  • #4
The first two lines look fine.
In the third you seem to have lost a 1/m. (Check the dimensions.)
In the middle expression of the last line you seem to have lost an entire factor, but maybe that was just a transcription error.
The final expression is dimensionally inconsistent (inside the square brackets you have a constant term minus a mass2 term).
 
  • #5
$$v=\frac{ L\left( m+\frac{1}{3}M \right) \omega }{m}=\frac{1}{m}\sqrt{Lg\left( m+\frac{1}{3}M \right)\left(m+\frac{M}{2} \right)(1-\cos\alpha) }$$
I don't think i missed a factor:
$$\Delta E=E_f-\frac{1}{2}mv^2$$
$$\Delta E=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)-\frac{1}{2}mv^2=Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha) \left[1-\frac{1}{2m}\left( m+\frac{M}{3}\right) \right]$$
And the units are correct, at least
 
  • #6
Karol said:
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)=(mL^2+\frac{1}{3}ML^2)\omega^2$$

Haven't you lost an 1/2?
 
  • #7
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)=\frac{1}{2}(mL^2+\frac{1}{3}ML^2)\omega^2\Rightarrow \omega^2=\frac{2g\left( m+\frac{M}{2} \right)(1-\cos\alpha)}{L\left( m+\frac{1}{3}M \right)}$$
And i understand that the rest is good
 
  • #8
Karol said:
$$E_f=\frac{1}{2}I\omega^2\rightarrow Lg\left( m+\frac{M}{2} \right)(1-\cos\alpha)=\frac{1}{2}(mL^2+\frac{1}{3}ML^2)\omega^2\Rightarrow \omega^2=\frac{2g\left( m+\frac{M}{2} \right)(1-\cos\alpha)}{L\left( m+\frac{1}{3}M \right)}$$
And i understand that the rest is good
With the factor 2, it is correct.
 
  • #9
Thank you ehild and haruspex (factor of 2...)
 
Back
Top