Ballentine Equation 5.13 on conservation of momentum

Click For Summary
SUMMARY

The discussion focuses on the derivation of the momentum conservation equation (5.13) from Ballentine's text, specifically regarding the momentum of a hydrogen atom's bound electron. Participants clarify the geometrical relationships of momentum vectors, particularly the angles involved, and suggest expressing the momentum vectors in terms of their components. The importance of accurately determining the angles and components is emphasized to simplify the calculations involved in the derivation.

PREREQUISITES
  • Understanding of vector algebra and component analysis
  • Familiarity with the principles of momentum conservation
  • Knowledge of spherical coordinates and angular relationships
  • Basic grasp of quantum mechanics, particularly in relation to atomic structure
NEXT STEPS
  • Study the derivation of momentum conservation equations in quantum mechanics
  • Learn about vector component breakdown in three-dimensional space
  • Explore the implications of angular relationships in momentum calculations
  • Review Ballentine's Chapter 5.3 for detailed examples of momentum vector analysis
USEFUL FOR

Students and professionals in physics, particularly those studying quantum mechanics, as well as educators looking to clarify concepts related to momentum conservation in atomic systems.

EE18
Messages
112
Reaction score
13
In Chapter 5.3, Ballentine uses geometrical arguments to obtain the initial magnitude of a hydrogen atom's bound electron momentum. How does equation (5.13) obtain? I tried to naively compute
$$p_e^2 \equiv \textbf{p}_e\cdot \textbf{p}_e = p_a^2+p_b^2+p_o^2 + 2\textbf{p}_a\cdot \textbf{p}_b - 2\textbf{p}_a\cdot \textbf{p}_0 - 2\textbf{p}_0\cdot \textbf{p}_b $$ $$= p_a^2+p_b^2+p_o^2 + 2p_ap_b\cos(\pi - \phi) - 2p_ap_0\cos \theta - 2p_bp_0\cos \theta$$
but then could not go any further. Am I misunderstanding the geometrical relationships of the vectors in Figure 5.1?

Screen Shot 2023-03-29 at 10.27.43 AM.png
Screen Shot 2023-03-29 at 10.27.55 AM.png
 
Physics news on Phys.org
EE18 said:
$$p_e^2 \equiv \textbf{p}_e\cdot \textbf{p}_e = p_a^2+p_b^2+p_o^2 + 2\textbf{p}_a\cdot \textbf{p}_b - 2\textbf{p}_a\cdot \textbf{p}_0 - 2\textbf{p}_0\cdot \textbf{p}_b $$ $$= p_a^2+p_b^2+p_o^2 + 2p_ap_b\cos(\pi - \phi) - 2p_ap_0\cos \theta - 2p_bp_0\cos \theta$$
Am I misunderstanding the geometrical relationships of the vectors in Figure 5.1?
The angle between ##\mathbf{P}_a## and ##\mathbf{P}_b## is not ##\pi - \phi##.

##\mathbf{P}_a## lies in the yellow plane that makes angle ##\phi/2## to the horizontal gray plane. You might try finding expressions for the x, y, and z components of ##\mathbf{P}_a## (shown in blue).

1680112505407.png
 
  • Like
Likes   Reactions: Ishika_96_sparkles, malawi_glenn and PeroK
TSny said:
The angle between ##\mathbf{P}_a## and ##\mathbf{P}_b## is not ##\pi - \phi##.

##\mathbf{P}_a## lies in the yellow plane that makes angle ##\phi/2## to the horizontal gray plane. You might try finding expressions for the x, y, and z components of ##\mathbf{P}_a## (shown in blue).

View attachment 324201
Thank you so much for that diagram, it helps me tremendously.

It seems like I have, by symmetry, that ##\textbf{p}_a \cdot \textbf{p}_b = p_{ax}^2 -p_{ay}^2 + p_{az}^2##. It then remains to find these components in terms of the given angles and ##p_a##. Now clearly ##p_{az} = \tan(\phi/2)p_{ay}##, ##p_{az} = p_a \cos \theta##, and ##p_a^2 = p_{ax}^2 +p_{ay}^2 + p_{az}^2## so that at least in theory I have three equations with which I can substitute away ##p_{ax}^2 -p_{ay}^2 + p_{az}^2## in the above in terms of the angles and ##p_a##. However it seems very ugly -- is there a cleaner way to do it or is it necessarily ugly?
 
EE18 said:
Now clearly ##p_{az} = \tan(\phi/2)p_{ay}##, ##p_{az} = p_a \cos \theta##
I think you meant the second equation to represent ##p_{ax}##.

Consider writing ##\mathbf{p}_a## in unit vector notation $$\mathbf{p}_a =p_{ax} \mathbf{i} +p_{ay} \mathbf{j} +p_{az} \mathbf{k}$$ Each of the components can be expressed in terms of the magnitude ##p_a## and the angles ##\theta## and ##\phi/2##. For example, you know ##p_{ax} = p_a \cos \theta##.

Do the same for ##\mathbf{p}_b##.

For ##\mathbf{p}_o## we have simply ##\mathbf{p}_o = p_0 \mathbf{i}##. Then use equation (5.12) to find the component expression for ##\mathbf{p}_e##.
 
  • Like
Likes   Reactions: EE18

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
3K