Ballentine Equation 5.13 on conservation of momentum

Click For Summary

Discussion Overview

The discussion revolves around the derivation of equation (5.13) from Ballentine's text, specifically concerning the conservation of momentum in the context of a hydrogen atom's bound electron. Participants explore geometrical relationships and vector components related to momentum in a three-dimensional space, engaging in technical reasoning and mathematical formulation.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant attempts to compute the magnitude of the electron momentum using a vector equation but encounters difficulties in understanding the geometrical relationships depicted in Ballentine's Figure 5.1.
  • Another participant corrects the initial assumption about the angle between vectors ##\mathbf{P}_a## and ##\mathbf{P}_b##, asserting it is not ##\pi - \phi## and suggesting the use of component expressions for further clarity.
  • A participant expresses that they have derived relationships for the components of ##\mathbf{p}_a## but finds the resulting equations complex and seeks a potentially cleaner approach.
  • Further clarification is provided regarding the components of ##\mathbf{p}_a##, with suggestions to use unit vector notation to express the components in terms of the magnitude and angles involved.

Areas of Agreement / Disagreement

Participants do not reach consensus on the geometrical relationships and the correct expressions for the momentum components, indicating that multiple competing views remain regarding the interpretation of the vectors and their angles.

Contextual Notes

Participants express uncertainty regarding the correct relationships between the angles and the components of the momentum vectors, highlighting potential dependencies on specific definitions and assumptions that are not fully resolved.

EE18
Messages
112
Reaction score
13
In Chapter 5.3, Ballentine uses geometrical arguments to obtain the initial magnitude of a hydrogen atom's bound electron momentum. How does equation (5.13) obtain? I tried to naively compute
$$p_e^2 \equiv \textbf{p}_e\cdot \textbf{p}_e = p_a^2+p_b^2+p_o^2 + 2\textbf{p}_a\cdot \textbf{p}_b - 2\textbf{p}_a\cdot \textbf{p}_0 - 2\textbf{p}_0\cdot \textbf{p}_b $$ $$= p_a^2+p_b^2+p_o^2 + 2p_ap_b\cos(\pi - \phi) - 2p_ap_0\cos \theta - 2p_bp_0\cos \theta$$
but then could not go any further. Am I misunderstanding the geometrical relationships of the vectors in Figure 5.1?

Screen Shot 2023-03-29 at 10.27.43 AM.png
Screen Shot 2023-03-29 at 10.27.55 AM.png
 
Physics news on Phys.org
EE18 said:
$$p_e^2 \equiv \textbf{p}_e\cdot \textbf{p}_e = p_a^2+p_b^2+p_o^2 + 2\textbf{p}_a\cdot \textbf{p}_b - 2\textbf{p}_a\cdot \textbf{p}_0 - 2\textbf{p}_0\cdot \textbf{p}_b $$ $$= p_a^2+p_b^2+p_o^2 + 2p_ap_b\cos(\pi - \phi) - 2p_ap_0\cos \theta - 2p_bp_0\cos \theta$$
Am I misunderstanding the geometrical relationships of the vectors in Figure 5.1?
The angle between ##\mathbf{P}_a## and ##\mathbf{P}_b## is not ##\pi - \phi##.

##\mathbf{P}_a## lies in the yellow plane that makes angle ##\phi/2## to the horizontal gray plane. You might try finding expressions for the x, y, and z components of ##\mathbf{P}_a## (shown in blue).

1680112505407.png
 
  • Like
Likes   Reactions: Ishika_96_sparkles, malawi_glenn and PeroK
TSny said:
The angle between ##\mathbf{P}_a## and ##\mathbf{P}_b## is not ##\pi - \phi##.

##\mathbf{P}_a## lies in the yellow plane that makes angle ##\phi/2## to the horizontal gray plane. You might try finding expressions for the x, y, and z components of ##\mathbf{P}_a## (shown in blue).

View attachment 324201
Thank you so much for that diagram, it helps me tremendously.

It seems like I have, by symmetry, that ##\textbf{p}_a \cdot \textbf{p}_b = p_{ax}^2 -p_{ay}^2 + p_{az}^2##. It then remains to find these components in terms of the given angles and ##p_a##. Now clearly ##p_{az} = \tan(\phi/2)p_{ay}##, ##p_{az} = p_a \cos \theta##, and ##p_a^2 = p_{ax}^2 +p_{ay}^2 + p_{az}^2## so that at least in theory I have three equations with which I can substitute away ##p_{ax}^2 -p_{ay}^2 + p_{az}^2## in the above in terms of the angles and ##p_a##. However it seems very ugly -- is there a cleaner way to do it or is it necessarily ugly?
 
EE18 said:
Now clearly ##p_{az} = \tan(\phi/2)p_{ay}##, ##p_{az} = p_a \cos \theta##
I think you meant the second equation to represent ##p_{ax}##.

Consider writing ##\mathbf{p}_a## in unit vector notation $$\mathbf{p}_a =p_{ax} \mathbf{i} +p_{ay} \mathbf{j} +p_{az} \mathbf{k}$$ Each of the components can be expressed in terms of the magnitude ##p_a## and the angles ##\theta## and ##\phi/2##. For example, you know ##p_{ax} = p_a \cos \theta##.

Do the same for ##\mathbf{p}_b##.

For ##\mathbf{p}_o## we have simply ##\mathbf{p}_o = p_0 \mathbf{i}##. Then use equation (5.12) to find the component expression for ##\mathbf{p}_e##.
 
  • Like
Likes   Reactions: EE18

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
3K