Jarvis323
- 1,247
- 988
I think maybe you want the 1's place the be the ##\frac{\pi}{10}##'s place?
If that's true then the 100s place should be ##10\pi##, not ##\pi^2##. But then the set is just the integers scaled by ##\pi/10## which again is not interesting.Jarvis323 said:I think maybe you want the 1's place the be the ##\frac{\pi}{10}##'s place?
@Atran, I don't believe you understand how numbers can be represented in different bases.Atran said:A proper number is expressed in \pi in a similar way as a decimal integer is expressed in base 2. For example, 4375_{\pi} = 4{\pi^3}+3{\pi^2}+7{\pi}+5.
This makes no sense whatsoever. In any usual number base, such as base-2, base-3, base-8, base-10, base-16, base-64, the digits used run from 0 up to, but not including, the base. In your list, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ##\pi##, your "base" lies between 3 and 4.Atran said:The only exception I make is that the 10 digits are included when expressing a number with \pi. To clarify, the first positive such numbers are: 0,1,2,3,4,5,6,7,8,9,{\pi},{\pi}+1,{\pi}+2,...,2{\pi},2{\pi}+1,...5{\pi},5{\pi}+1,5{\pi}+2,...,9{\pi}+8,9{\pi}+9,{\pi}^2,....