skam74
- 4
- 0
My answer is correct, but I feel like I might've taken an illegitimate route to get there. Can anyone verify? Many thanks in advance.
\underset{x\rightarrow0}{\lim}\frac{x-xcosx}{sin^{2}3x}
\sin ^{2}x = \frac{1-\cos 2x}{2}
\frac{x}{\frac{y}{z}}=x\cdot \frac{z}{y}
\underset{x\rightarrow0}{\lim}\frac{x-xcosx}{sin^{2}3x}
=\underset{x\rightarrow0}{\lim}\frac{(x-x)cosx}{(\cfrac{1-cos(6x)}{2})}
=\underset{x\rightarrow0}{\lim}\frac{(x-x)cosx}{1}\cdot\frac{2}{1-cos(6x)}
=\underset{x\rightarrow0}{\lim}2((x-x)cosx)\cdot(1-cos(6x))
=2((0)cos0)\cdot(1-cos0)
=2(0\cdot1)\cdot(1-1)
=0
Homework Statement
\underset{x\rightarrow0}{\lim}\frac{x-xcosx}{sin^{2}3x}
Homework Equations
\sin ^{2}x = \frac{1-\cos 2x}{2}
\frac{x}{\frac{y}{z}}=x\cdot \frac{z}{y}
The Attempt at a Solution
\underset{x\rightarrow0}{\lim}\frac{x-xcosx}{sin^{2}3x}
=\underset{x\rightarrow0}{\lim}\frac{(x-x)cosx}{(\cfrac{1-cos(6x)}{2})}
=\underset{x\rightarrow0}{\lim}\frac{(x-x)cosx}{1}\cdot\frac{2}{1-cos(6x)}
=\underset{x\rightarrow0}{\lim}2((x-x)cosx)\cdot(1-cos(6x))
=2((0)cos0)\cdot(1-cos0)
=2(0\cdot1)\cdot(1-1)
=0