Kashmir
- 466
- 74
I meant this ##\hat{p}=\left(\hat{p}_{x} \otimes 1 \otimes 1\right)+\left(1 \otimes \hat{p}_{y} \otimes 1\right)+\left(1 \otimes 1 \otimes \hat{p}_{z}\right)##vanhees71 said:I don't know what your symbol ##\hat{P}## means. You have three momentum-component operators. In the product notation it's defined as
$$\hat{P}_x=\hat{p}_x \otimes \hat{1} \otimes \hat{1}, \quad \hat{P}_y=\hat{1} \otimes \hat{p}_y \otimes \hat{1}, \quad \hat{P}_z=\hat{1} \otimes \hat{1} \otimes \hat{p}_z.$$
The momentum operators in the position representation are ##\hat{p}_j=-\mathrm{i} \hbar \partial/\partial x_j##. This you can derive from the commutation relations ##[\hat{x}_j,\hat{p}_k]=\mathrm{i} \hbar \delta_{jk} \hat{1}## with ##j,k \in \{x,y,z \}##.