MHB Bebe's question at Yahoo Answers (Curv. and torsion)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Torsion
Click For Summary
The discussion centers on computing the curvature and torsion of the curve r(t) = <sinh t, cosh t, t> at the point (0,1,0). The first derivatives at t=0 yield values necessary for these calculations, specifically, the first derivative is (1, 0, 1) and the second derivative is (0, 1, 0). The curvature at this point is calculated to be 1/2 using the cross product of the first two derivatives. The torsion can be computed using the third derivative and the previously calculated derivatives, though the exact value is not provided in the discussion. The computations for both curvature and torsion are straightforward and follow established formulas.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Consider the curve r(t)=<sinh t, cosh t, t>, where sinh t= (e^t- e^-t)/2 and cosh t= (e^t+ e^-t)/2. Compute the curvature and torsion of r(t) at the point (0,1,0).
[Hint: it may be helpful to know that sinh^2 (t) +1= cosh^2 (t) for all t]

Here is a link to the question:

Consider the curve r(t)=<sinh t, cosh t, t>? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Bebe,

We have:

$$\begin{aligned}&\vec{r}(t)=(\sinh t,\cosh t,t) \Rightarrow\vec{r}(0)=(0,1,0)\\&\frac{d\vec{r}}{dt}=\left (\cosh t,\sinh t,1\right)\Rightarrow\frac{d\vec{r}}{ dt }(0)=\left(1, 0,1\right)\\&\frac{d^2\vec{r}}{dt^2}=\left(\sinh t,\cosh t,0\right)\Rightarrow \frac{d^2\vec{r}}{dt^2}(0)=(0,1,0)\\&\frac{d^3\vec{r}}{dt^3}=\left(\cosh t,\sinh t,0\right)\Rightarrow \frac{d^3\vec{r}}{dt^3}(0)=(1,0,0)\end{aligned}$$ Using a well-known formula, the curvature at $(0,1,0)$ is: $$\kappa (0)=\dfrac{\left |\dfrac{d\vec{r}}{dt}(0)\times \dfrac{d^2\vec{r}}{dt^2}(0)\right |}{\left |\dfrac{d\vec{r}}{dt}(0)\right |^3}=\dfrac{\left |(1,0,1)\times (0,1,0)\right |}{\left |(1,0,1)\right |^3}=\ldots=\dfrac{1}{2}$$ The torsion is: $$\tau (0)=\dfrac{\left[\dfrac{d\vec{r}}{dt}(0),\dfrac{d^2\vec{r}}{dt^2}(0),\dfrac{d^3\vec{r}}{dt^3}(0)\right]}{\left(\dfrac{d\vec{r}}{dt}(0)\times \dfrac{d^2\vec{r}}{dt^2}(0)\right)^2}=\ldots$$ Easily you can complete the computations.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K