MHB Berk's question via email about an antiderivative

AI Thread Summary
The integral of e^(-2x)cos(3x) can be evaluated using Integration By Parts twice, leading to the expression I = (3/13)e^(-2x)sin(3x) - (2/13)e^(-2x)cos(3x) + C. An alternative method involves solving a differential equation, where the particular solution is derived from the form e^(ax)(Acos(bx) + Bsin(bx)). By equating coefficients, the constants A and B are found, resulting in the same integral solution. The final result confirms that the integral evaluates to (e^(-2x)/13)(3sin(3x) - 2cos(3x)) + C. This demonstrates the consistency of different integration techniques for the same problem.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \begin{align*} \int{ \mathrm{e}^{-2\,x}\cos{(3\,x)}\,\mathrm{d}x} \end{align*}$

This requires using Integration By Parts twice...

$\displaystyle \begin{align*} I &= \int{\mathrm{e}^{-2\,x}\cos{ \left( 3\,x \right) } \,\mathrm{d}x} \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \int{ -\frac{2}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)}\,\mathrm{d}x } \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} + \frac{2}{3} \int{ \mathrm{e}^{-2\,x} \sin{(3\,x)} \,\mathrm{d}x } \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} + \frac{2}{3} \left[ -\frac{1}{3}\,\mathrm{e}^{-2\,x} \cos{(3\,x)} - \int{ \frac{2}{3}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } \,\mathrm{d}x } \right] \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x}\sin{ \left( 3\,x \right) } - \frac{2}{9}\,\mathrm{e}^{-2\,x} \cos{(3\,x)} - \frac{4}{9} \int{ \mathrm{e}^{-2\,x} \cos{(3\,x)} \,\mathrm{d}x } \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{ \left( 3\,x \right) } - \frac{2}{9} \,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } - \frac{4}{9}\,I \\ \frac{13}{9}\,I &= \frac{3}{9}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \frac{2}{9}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\, x\right) } \\ I &= \frac{3}{13}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \frac{2}{13}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } \end{align*}$

Thus $\displaystyle \begin{align*} \int{ \mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } \,\mathrm{d}x} = \frac{3}{13}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \frac{2}{13}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } + C \end{align*}$
 
Mathematics news on Phys.org
Another approach would be to consider:

$$y=\int e^{ax}\cos(bx)\,dx$$

Thus:

$$\d{y}{x}=e^{ax}\cos(bx)$$

The homogeneous solution is:

$$y_h(x)=c_1$$

And the particular solution will take the form:

$$y_p(x)=e^{ax}\left(A\cos(bx)+B\sin(bx)\right)$$

Hence:

$$y_p'(x)=e^{ax}\left((Aa+Bb)\cos(bx)+(Ba-Ab)\sin(bx)\right)$$

Substituting into the ODE, we obtain:

$$e^{ax}\left((Aa+Bb)\cos(bx)+(Ba-Ab)\sin(bx)\right)=e^{ax}\cos(bx)$$

$$(Aa+Bb)\cos(bx)+(Ba-Ab)\sin(bx)=\cos(bx)+0\sin(bx)$$

Equating coefficients, we obtain the system:

$$Aa+Bb=1$$

$$Ba-Ab=0$$

Solving this system, we obtain:

$$(A,B)=\left(\frac{a}{a^2+b^2},\frac{b}{a^2+b^2}\right)$$

And so our particular solution is:

$$y_p(x)=\frac{e^{ax}}{a^2+b^2}\left(a\cos(bx)+b\sin(bx)\right)$$

And then by the principle of superposition, there results:

$$y(x)=y_h(x)+y_p(x)=c_1+\frac{e^{ax}}{a^2+b^2}\left(a\cos(bx)+b\sin(bx)\right)$$

And so we conclude:

$$\int e^{ax}\cos(bx)\,dx=\frac{e^{ax}}{a^2+b^2}\left(a\cos(bx)+b\sin(bx)\right)+C$$

In the given problem, we have:

$$a=-2,\,b=3$$

Plugging those in, we have:

$$\int e^{-2x}\cos(3x)\,dx=\frac{e^{-2x}}{13}\left(3\sin(bx)-2\cos(bx)\right)+C$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top