MHB Berk's question via email about an antiderivative

Click For Summary
The integral of e^(-2x)cos(3x) can be evaluated using Integration By Parts twice, leading to the expression I = (3/13)e^(-2x)sin(3x) - (2/13)e^(-2x)cos(3x) + C. An alternative method involves solving a differential equation, where the particular solution is derived from the form e^(ax)(Acos(bx) + Bsin(bx)). By equating coefficients, the constants A and B are found, resulting in the same integral solution. The final result confirms that the integral evaluates to (e^(-2x)/13)(3sin(3x) - 2cos(3x)) + C. This demonstrates the consistency of different integration techniques for the same problem.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \begin{align*} \int{ \mathrm{e}^{-2\,x}\cos{(3\,x)}\,\mathrm{d}x} \end{align*}$

This requires using Integration By Parts twice...

$\displaystyle \begin{align*} I &= \int{\mathrm{e}^{-2\,x}\cos{ \left( 3\,x \right) } \,\mathrm{d}x} \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \int{ -\frac{2}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)}\,\mathrm{d}x } \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} + \frac{2}{3} \int{ \mathrm{e}^{-2\,x} \sin{(3\,x)} \,\mathrm{d}x } \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} + \frac{2}{3} \left[ -\frac{1}{3}\,\mathrm{e}^{-2\,x} \cos{(3\,x)} - \int{ \frac{2}{3}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } \,\mathrm{d}x } \right] \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x}\sin{ \left( 3\,x \right) } - \frac{2}{9}\,\mathrm{e}^{-2\,x} \cos{(3\,x)} - \frac{4}{9} \int{ \mathrm{e}^{-2\,x} \cos{(3\,x)} \,\mathrm{d}x } \\ I &= \frac{1}{3}\,\mathrm{e}^{-2\,x} \sin{ \left( 3\,x \right) } - \frac{2}{9} \,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } - \frac{4}{9}\,I \\ \frac{13}{9}\,I &= \frac{3}{9}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \frac{2}{9}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\, x\right) } \\ I &= \frac{3}{13}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \frac{2}{13}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } \end{align*}$

Thus $\displaystyle \begin{align*} \int{ \mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } \,\mathrm{d}x} = \frac{3}{13}\,\mathrm{e}^{-2\,x} \sin{(3\,x)} - \frac{2}{13}\,\mathrm{e}^{-2\,x} \cos{ \left( 3\,x \right) } + C \end{align*}$
 
Mathematics news on Phys.org
Another approach would be to consider:

$$y=\int e^{ax}\cos(bx)\,dx$$

Thus:

$$\d{y}{x}=e^{ax}\cos(bx)$$

The homogeneous solution is:

$$y_h(x)=c_1$$

And the particular solution will take the form:

$$y_p(x)=e^{ax}\left(A\cos(bx)+B\sin(bx)\right)$$

Hence:

$$y_p'(x)=e^{ax}\left((Aa+Bb)\cos(bx)+(Ba-Ab)\sin(bx)\right)$$

Substituting into the ODE, we obtain:

$$e^{ax}\left((Aa+Bb)\cos(bx)+(Ba-Ab)\sin(bx)\right)=e^{ax}\cos(bx)$$

$$(Aa+Bb)\cos(bx)+(Ba-Ab)\sin(bx)=\cos(bx)+0\sin(bx)$$

Equating coefficients, we obtain the system:

$$Aa+Bb=1$$

$$Ba-Ab=0$$

Solving this system, we obtain:

$$(A,B)=\left(\frac{a}{a^2+b^2},\frac{b}{a^2+b^2}\right)$$

And so our particular solution is:

$$y_p(x)=\frac{e^{ax}}{a^2+b^2}\left(a\cos(bx)+b\sin(bx)\right)$$

And then by the principle of superposition, there results:

$$y(x)=y_h(x)+y_p(x)=c_1+\frac{e^{ax}}{a^2+b^2}\left(a\cos(bx)+b\sin(bx)\right)$$

And so we conclude:

$$\int e^{ax}\cos(bx)\,dx=\frac{e^{ax}}{a^2+b^2}\left(a\cos(bx)+b\sin(bx)\right)+C$$

In the given problem, we have:

$$a=-2,\,b=3$$

Plugging those in, we have:

$$\int e^{-2x}\cos(3x)\,dx=\frac{e^{-2x}}{13}\left(3\sin(bx)-2\cos(bx)\right)+C$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
11K