MHB Bifurcations, steady states, model analysis

AI Thread Summary
The discussion focuses on analyzing the stability and bifurcation of a piecewise defined model represented by the equations for population dynamics. The steady states identified are \(N_* = \sqrt[b]{r}\) and \(N_* = 0\). The analysis examines three cases: when \(N_t < 0\), \(0 < N_t < \sqrt[b]{r}\), and \(N_t > \sqrt[b]{r}\), to determine the behavior of \(N_{t+1}\) relative to \(N_t\). The stability of the steady states hinges on whether the sequences approach or diverge from these values, with the possibility that both steady states could be unstable. Overall, the discussion emphasizes the importance of understanding the dynamics around these critical points to assess stability.
Dustinsfl
Messages
2,217
Reaction score
5
$N_{t + 1} =\begin{cases}rN_t^{1 - b}, & N_t > K\\
rN_t, & N_t < K
\end{cases}$The steady states are when $N_{t + 1} = N_t = N_*$.
$$
N_{*} =\begin{cases}rN_*^{1 - b}, & N_* > K\\
rN_*, & N_* < K
\end{cases}
$$
So the steady states are $N_* = \sqrt{r}$ and $N_* = 0$.

I am not sure how to check for stability and bifurcations values for a piece wise defined model.
 
Mathematics news on Phys.org
Look at three cases:

1) Suppose $N_t< 0$. What is $N_{t+1}$? Is it larger than $N_t$ so that the sequence is heading toward 0 or is it smaller so the sequence is heading away from 0?

2) Suppose $0< N_t<\sqrt{r}$. What is $N_{t+1}$? Is it less than $N_t$ so the sequence is heading toward 0 or is it larger so it is heading toward $\sqrt{r}$?

3) Suppose $\sqrt{r}< N_t$. What is $N_{t+1}$? Is it less than $N_t$ so the sequence is heading toward $\sqrt{r}$ or is it larger so it is heading away?

If in 1 and 2 you said that the sequence was heading toward 0, then 0 is stable. If in 2 and 3 you said that the sequence was heading toward $\sqrt{r}$ then that is stable. Notice that is is not possible for both 0 and $\sqrt{r}$ both to be stable- if in 2, the sequence is heading toward 0, it cannot be heading toward $\sqrt{r}$. It is, however, possible for them both to be unstable.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top