MHB Bifurcations, steady states, model analysis

Click For Summary
The discussion focuses on analyzing the stability and bifurcation of a piecewise defined model represented by the equations for population dynamics. The steady states identified are \(N_* = \sqrt[b]{r}\) and \(N_* = 0\). The analysis examines three cases: when \(N_t < 0\), \(0 < N_t < \sqrt[b]{r}\), and \(N_t > \sqrt[b]{r}\), to determine the behavior of \(N_{t+1}\) relative to \(N_t\). The stability of the steady states hinges on whether the sequences approach or diverge from these values, with the possibility that both steady states could be unstable. Overall, the discussion emphasizes the importance of understanding the dynamics around these critical points to assess stability.
Dustinsfl
Messages
2,217
Reaction score
5
$N_{t + 1} =\begin{cases}rN_t^{1 - b}, & N_t > K\\
rN_t, & N_t < K
\end{cases}$The steady states are when $N_{t + 1} = N_t = N_*$.
$$
N_{*} =\begin{cases}rN_*^{1 - b}, & N_* > K\\
rN_*, & N_* < K
\end{cases}
$$
So the steady states are $N_* = \sqrt{r}$ and $N_* = 0$.

I am not sure how to check for stability and bifurcations values for a piece wise defined model.
 
Mathematics news on Phys.org
Look at three cases:

1) Suppose $N_t< 0$. What is $N_{t+1}$? Is it larger than $N_t$ so that the sequence is heading toward 0 or is it smaller so the sequence is heading away from 0?

2) Suppose $0< N_t<\sqrt{r}$. What is $N_{t+1}$? Is it less than $N_t$ so the sequence is heading toward 0 or is it larger so it is heading toward $\sqrt{r}$?

3) Suppose $\sqrt{r}< N_t$. What is $N_{t+1}$? Is it less than $N_t$ so the sequence is heading toward $\sqrt{r}$ or is it larger so it is heading away?

If in 1 and 2 you said that the sequence was heading toward 0, then 0 is stable. If in 2 and 3 you said that the sequence was heading toward $\sqrt{r}$ then that is stable. Notice that is is not possible for both 0 and $\sqrt{r}$ both to be stable- if in 2, the sequence is heading toward 0, it cannot be heading toward $\sqrt{r}$. It is, however, possible for them both to be unstable.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K