MHB Binomial coefficient challenge

Click For Summary
The discussion revolves around proving the identity involving the binomial coefficient, specifically the sum of the reciprocals of binomial coefficients. Participants explore various approaches to demonstrate that the infinite series equals \(\frac{r+1}{r}\) for natural numbers \(r\) and \(n\). A suggested solution is provided, prompting further analysis and verification of the identity. The conversation emphasizes the mathematical reasoning and techniques required to tackle such combinatorial identities. Ultimately, the challenge encourages deeper exploration of binomial coefficients and their properties.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the following identity:\[\sum_{n =1}^{\infty }\frac{1}{\binom{n+r}{r+1}}=\frac{r+1}{r},\: \: \: \: r,n \in \mathbb{N}.\]
 
Mathematics news on Phys.org
Hint:

Consider the difference:

\[\frac{1}{\binom{n+r-1}{r}}-\frac{1}{\binom{n+r}{r}}\]
 
Suggested solution:

We have:

\[\frac{1}{\binom{n+r-1}{r}}-\frac{1}{\binom{n+r}{r}}=\frac{r!(n-1)!}{(n+r-1)!}-\frac{r!n!}{(n+r)!} \\\\ =r!(n-1)!\left ( \frac{n+r}{(n+r)!}-\frac{n}{(n+r)!}\right ) = \frac{r!(n-1)!r}{(n+r)!}\]

Now, compare the last term with:

\[\frac{1}{\binom{n+r}{r+1}}=\frac{(r+1)!(n-1)!}{(n+r)!}\]

If we divide by $r$ and multiply by $r+1$, we have the identity:

\[\frac{1}{\binom{n+r}{r+1}}=\frac{r+1}{r}\left ( \frac{1}{\binom{n+r-1}{r}}-\frac{1}{\binom{n+r}{r}} \right )\]

Summing over all possible $n$ (the RHS is a telescoping sum):

\[\sum_{n=1}^{\infty }\frac{1}{\binom{n+r}{r+1}}=\frac{r+1}{r}\sum_{n=1}^{\infty }\left ( \frac{1}{\binom{n+r-1}{r}}-\frac{1}{\binom{n+r}{r}} \right ) \\\\ =\frac{r+1}{r}\left ( \frac{1}{\binom{r}{r}}-\frac{1}{\binom{r+1}{r}}+\frac{1}{\binom{r+1}{r}} -\frac{1}{\binom{r+2}{r}} + \frac{1}{\binom{r+2}{r}} - ... \right ) \\\\ =\frac{r+1}{r}.\]
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K