MHB Binomial theorem (Milind Charakborty's question at Yahoo Answers)

AI Thread Summary
The discussion focuses on determining the last three and four terms of the binomial expansion (a + b)^n. The last three terms are expressed as (n(n-1)(n-2)/3!)a^3b^(n-3) + (n(n-1)/2!)a^2b^(n-2) + na^(1)b^(n-1) + b^n. For the last four terms, the expansion includes additional coefficients and terms based on the binomial theorem. The response provides a clear mathematical formulation using binomial coefficients to derive these terms. Understanding these expansions is essential for applying the binomial theorem in various mathematical contexts.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

I know that the last two terms of (a + b)^n = n.a.b^n-1 + b^n
What are the last three terms of the same?
Also
What are the last four terms of the same?

Here is a link to the question:

What are the last three and four terms of (a + b)^n? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Milind Charakborty,

According to the binomial theorem: $$(a+b)^n=\displaystyle\sum_{i=0}^n{}\displaystyle\binom{n}{k}a^{n-k}b^k=\displaystyle\binom{n}{0}a^{n}+\displaystyle\binom{n}{1}a^{n-1}b^{}+\displaystyle\binom{n}{2}a^{n-2}b^{2}+\ldots\\+\displaystyle\binom{n}{n-3}a^{3}b^{n-3}+\displaystyle\binom{n}{n-2}a^{2}b^{n-1}+\displaystyle\binom{n}{n-1}a^{}b^{n-1}+\displaystyle\binom{n}{n}b^{n}$$ Using $\displaystyle\binom{n}{p}=\displaystyle\binom{n}{n-p}$: $$(a+b)^n=\ldots+\displaystyle\binom{n}{3}a^{3}b^{n-3}+\displaystyle\binom{n}{2}a^{2}b^{n-1}+\displaystyle\binom{n}{1}a^{}b^{n-1}+\displaystyle\binom{n}{0}b^{n}\\=\ldots +\frac{n(n-1)(n-2)}{3!}a^{3}b^{n-3}+\frac{n(n-1)}{2!}a^{2}b^{n-2}+na^{}b^{n-1}+b^{n}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
7
Views
14K
3
Replies
105
Views
6K
Replies
1
Views
3K
Replies
1
Views
2K
Replies
8
Views
5K
Back
Top