MHB Binomial theorem (Milind Charakborty's question at Yahoo Answers)

Click For Summary
The discussion focuses on determining the last three and four terms of the binomial expansion (a + b)^n. The last three terms are expressed as (n(n-1)(n-2)/3!)a^3b^(n-3) + (n(n-1)/2!)a^2b^(n-2) + na^(1)b^(n-1) + b^n. For the last four terms, the expansion includes additional coefficients and terms based on the binomial theorem. The response provides a clear mathematical formulation using binomial coefficients to derive these terms. Understanding these expansions is essential for applying the binomial theorem in various mathematical contexts.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

I know that the last two terms of (a + b)^n = n.a.b^n-1 + b^n
What are the last three terms of the same?
Also
What are the last four terms of the same?

Here is a link to the question:

What are the last three and four terms of (a + b)^n? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Milind Charakborty,

According to the binomial theorem: $$(a+b)^n=\displaystyle\sum_{i=0}^n{}\displaystyle\binom{n}{k}a^{n-k}b^k=\displaystyle\binom{n}{0}a^{n}+\displaystyle\binom{n}{1}a^{n-1}b^{}+\displaystyle\binom{n}{2}a^{n-2}b^{2}+\ldots\\+\displaystyle\binom{n}{n-3}a^{3}b^{n-3}+\displaystyle\binom{n}{n-2}a^{2}b^{n-1}+\displaystyle\binom{n}{n-1}a^{}b^{n-1}+\displaystyle\binom{n}{n}b^{n}$$ Using $\displaystyle\binom{n}{p}=\displaystyle\binom{n}{n-p}$: $$(a+b)^n=\ldots+\displaystyle\binom{n}{3}a^{3}b^{n-3}+\displaystyle\binom{n}{2}a^{2}b^{n-1}+\displaystyle\binom{n}{1}a^{}b^{n-1}+\displaystyle\binom{n}{0}b^{n}\\=\ldots +\frac{n(n-1)(n-2)}{3!}a^{3}b^{n-3}+\frac{n(n-1)}{2!}a^{2}b^{n-2}+na^{}b^{n-1}+b^{n}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
14K
  • · Replies 105 ·
4
Replies
105
Views
8K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
6K