MHB Binomial theorem (Milind Charakborty's question at Yahoo Answers)

AI Thread Summary
The discussion focuses on determining the last three and four terms of the binomial expansion (a + b)^n. The last three terms are expressed as (n(n-1)(n-2)/3!)a^3b^(n-3) + (n(n-1)/2!)a^2b^(n-2) + na^(1)b^(n-1) + b^n. For the last four terms, the expansion includes additional coefficients and terms based on the binomial theorem. The response provides a clear mathematical formulation using binomial coefficients to derive these terms. Understanding these expansions is essential for applying the binomial theorem in various mathematical contexts.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

I know that the last two terms of (a + b)^n = n.a.b^n-1 + b^n
What are the last three terms of the same?
Also
What are the last four terms of the same?

Here is a link to the question:

What are the last three and four terms of (a + b)^n? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Milind Charakborty,

According to the binomial theorem: $$(a+b)^n=\displaystyle\sum_{i=0}^n{}\displaystyle\binom{n}{k}a^{n-k}b^k=\displaystyle\binom{n}{0}a^{n}+\displaystyle\binom{n}{1}a^{n-1}b^{}+\displaystyle\binom{n}{2}a^{n-2}b^{2}+\ldots\\+\displaystyle\binom{n}{n-3}a^{3}b^{n-3}+\displaystyle\binom{n}{n-2}a^{2}b^{n-1}+\displaystyle\binom{n}{n-1}a^{}b^{n-1}+\displaystyle\binom{n}{n}b^{n}$$ Using $\displaystyle\binom{n}{p}=\displaystyle\binom{n}{n-p}$: $$(a+b)^n=\ldots+\displaystyle\binom{n}{3}a^{3}b^{n-3}+\displaystyle\binom{n}{2}a^{2}b^{n-1}+\displaystyle\binom{n}{1}a^{}b^{n-1}+\displaystyle\binom{n}{0}b^{n}\\=\ldots +\frac{n(n-1)(n-2)}{3!}a^{3}b^{n-3}+\frac{n(n-1)}{2!}a^{2}b^{n-2}+na^{}b^{n-1}+b^{n}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
7
Views
14K
3
Replies
105
Views
6K
Replies
1
Views
3K
Replies
1
Views
2K
Replies
8
Views
5K
Back
Top