(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A cylinder of length 0.02m emits 100W and is at 2000K. It is a perfect black body. What is it's diameter?

2. Relevant equations

Planck's Law:

B(λ,T) =

http://en.wikipedia.org/wiki/Planck's_law

solid radian = A/r^2 (not sure if needed or not)

3. The attempt at a solution

surface area = 0.02 x 2 pi r + 2 pi r^2

solid radians of the cylinder = (pi r^2) / (r^2 + 0.01^2)

r is radius of the cylinder

frequency of peak radiation = 2.07 x 10^14

(I used Wien's displacement law to get the peak frequency)

B x surface area x solid radians x frequency = 100W

(I'm using dimensional analysis here, not really sure what's going on)

100 = 9.104 x 10^-10 x (0.04 pi r + 2 pi r^2) x (pi r^2)/(r^2 x 10^-6) x 2.07 x 10^14

which rearranges to...

5.303 x 10^-14 (r^2 + 1x10^-6) = 0.04 (pi)^2 r^3 + 2 (pi)^2 r^4

I cant solve for r :(

any help or explanation is much appreciated

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Black body radiation, Plancks' Law question?

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**