MHB Boundary Conditions of the Third Kind

Click For Summary
The discussion focuses on boundary conditions of the third kind for the differential equation involving the function φ. It establishes that φ can be expressed as A cos(x√λ) due to the condition φ'(0) = 0. The relationship between λ and h is derived, leading to the equation s tan(s) = Lh, where s = L√λ. The conversation questions whether Lh equals π/2, with one participant arguing that the solutions approach integer multiples of π instead. The conclusion emphasizes that Lh does not equal π/2 based on the plotted solutions.
Dustinsfl
Messages
2,217
Reaction score
5
\begin{align}
\varphi''+\lambda\varphi &= 0, & \quad 0< x < L\\
\varphi'(0) &= 0 &\\
\varphi'(L)+h\varphi(L) &=0, & \quad h\in\mathbb{R}
\end{align}
$$
\varphi = A\cos x\sqrt{\lambda} + B\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}
$$
Since $\varphi'(0) = 0$, $\varphi = A\cos x\sqrt{\lambda}$. Then
$$
-\sqrt{\lambda}\sin L\sqrt{\lambda}+h\cos L\sqrt{\lambda} = 0 \Leftrightarrow \sqrt{\lambda}\tan L\sqrt{\lambda} = h
$$
Multiplying be $L$.
$$
L\sqrt{\lambda}\tan L\sqrt{\lambda} = Lh
$$
Let $L\sqrt{\lambda} = s$. Then $s\tan s = Lh$. By definition, $\tan (-s) = -\tan s$ and $\lambda = \left(\dfrac{s}{L}\right)^2 = \left(\dfrac{-s}{L}\right)^2$.
\begin{align}
y_1 &= \tan s, & \quad 0\leq s <\infty\\
y_2 &= \frac{Lh}{s}, & \quad 0\leq s <\infty
\end{align}

Why does $Lh = \dfrac{\pi}{2}\mbox{?}$
 
Physics news on Phys.org
dwsmith said:
\begin{align}
\varphi''+\lambda\varphi &= 0, & \quad 0< x < L\\
\varphi'(0) &= 0 &\\
\varphi'(L)+h\varphi(L) &=0, & \quad h\in\mathbb{R}
\end{align}
$$
\varphi = A\cos x\sqrt{\lambda} + B\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}
$$
Since $\varphi'(0) = 0$, $\varphi = A\cos x\sqrt{\lambda}$. Then
$$
-\sqrt{\lambda}\sin L\sqrt{\lambda}+h\cos L\sqrt{\lambda} = 0 \Leftrightarrow \sqrt{\lambda}\tan L\sqrt{\lambda} = h
$$
Multiplying be $L$.
$$
L\sqrt{\lambda}\tan L\sqrt{\lambda} = Lh
$$
Let $L\sqrt{\lambda} = s$. Then $s\tan s = Lh$. By definition, $\tan (-s) = -\tan s$ and $\lambda = \left(\dfrac{s}{L}\right)^2 = \left(\dfrac{-s}{L}\right)^2$.
\begin{align}
y_1 &= \tan s, & \quad 0\leq s <\infty\\
y_2 &= \frac{Lh}{s}, & \quad 0\leq s <\infty
\end{align}

Why does $Lh = \dfrac{\pi}{2}\mbox{?}$

I don't think it does. From this plot, you can see that the solutions are going to get closer and closer to integer multiples of $\pi$, not $\pi/2$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K