MHB Boundary Conditions of the Third Kind

Click For Summary
SUMMARY

The discussion centers on the boundary value problem defined by the differential equation \(\varphi''+\lambda\varphi = 0\) with boundary conditions \(\varphi'(0) = 0\) and \(\varphi'(L)+h\varphi(L) = 0\). The solution is expressed as \(\varphi = A\cos x\sqrt{\lambda} + B\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}\). The relationship \(L\sqrt{\lambda}\tan L\sqrt{\lambda} = Lh\) is derived, leading to the conclusion that \(Lh\) approaches integer multiples of \(\pi\) rather than \(\frac{\pi}{2}\), as evidenced by graphical analysis.

PREREQUISITES
  • Understanding of differential equations, specifically second-order linear equations.
  • Familiarity with boundary value problems and their solutions.
  • Knowledge of trigonometric functions and their properties, particularly the tangent function.
  • Basic skills in mathematical analysis and graphical interpretation of functions.
NEXT STEPS
  • Explore the theory of boundary value problems in differential equations.
  • Study the properties of trigonometric functions, focusing on the tangent function and its asymptotic behavior.
  • Investigate numerical methods for solving boundary value problems, such as the shooting method.
  • Learn about the implications of boundary conditions on the stability and uniqueness of solutions in differential equations.
USEFUL FOR

Mathematicians, physicists, and engineers dealing with boundary value problems in differential equations, as well as students seeking to deepen their understanding of mathematical analysis and its applications.

Dustinsfl
Messages
2,217
Reaction score
5
\begin{align}
\varphi''+\lambda\varphi &= 0, & \quad 0< x < L\\
\varphi'(0) &= 0 &\\
\varphi'(L)+h\varphi(L) &=0, & \quad h\in\mathbb{R}
\end{align}
$$
\varphi = A\cos x\sqrt{\lambda} + B\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}
$$
Since $\varphi'(0) = 0$, $\varphi = A\cos x\sqrt{\lambda}$. Then
$$
-\sqrt{\lambda}\sin L\sqrt{\lambda}+h\cos L\sqrt{\lambda} = 0 \Leftrightarrow \sqrt{\lambda}\tan L\sqrt{\lambda} = h
$$
Multiplying be $L$.
$$
L\sqrt{\lambda}\tan L\sqrt{\lambda} = Lh
$$
Let $L\sqrt{\lambda} = s$. Then $s\tan s = Lh$. By definition, $\tan (-s) = -\tan s$ and $\lambda = \left(\dfrac{s}{L}\right)^2 = \left(\dfrac{-s}{L}\right)^2$.
\begin{align}
y_1 &= \tan s, & \quad 0\leq s <\infty\\
y_2 &= \frac{Lh}{s}, & \quad 0\leq s <\infty
\end{align}

Why does $Lh = \dfrac{\pi}{2}\mbox{?}$
 
Physics news on Phys.org
dwsmith said:
\begin{align}
\varphi''+\lambda\varphi &= 0, & \quad 0< x < L\\
\varphi'(0) &= 0 &\\
\varphi'(L)+h\varphi(L) &=0, & \quad h\in\mathbb{R}
\end{align}
$$
\varphi = A\cos x\sqrt{\lambda} + B\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}
$$
Since $\varphi'(0) = 0$, $\varphi = A\cos x\sqrt{\lambda}$. Then
$$
-\sqrt{\lambda}\sin L\sqrt{\lambda}+h\cos L\sqrt{\lambda} = 0 \Leftrightarrow \sqrt{\lambda}\tan L\sqrt{\lambda} = h
$$
Multiplying be $L$.
$$
L\sqrt{\lambda}\tan L\sqrt{\lambda} = Lh
$$
Let $L\sqrt{\lambda} = s$. Then $s\tan s = Lh$. By definition, $\tan (-s) = -\tan s$ and $\lambda = \left(\dfrac{s}{L}\right)^2 = \left(\dfrac{-s}{L}\right)^2$.
\begin{align}
y_1 &= \tan s, & \quad 0\leq s <\infty\\
y_2 &= \frac{Lh}{s}, & \quad 0\leq s <\infty
\end{align}

Why does $Lh = \dfrac{\pi}{2}\mbox{?}$

I don't think it does. From this plot, you can see that the solutions are going to get closer and closer to integer multiples of $\pi$, not $\pi/2$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K