Bounded Solution For Differential Inequality

Click For Summary

Discussion Overview

The discussion centers on the boundedness of a positive function \( x(t) \) that satisfies a specific differential inequality. Participants explore whether \( x(t) \) remains bounded for all \( T \geq 0 \), considering various mathematical approaches and implications of the inequality.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant asserts that since a continuous function on a closed and bounded interval is bounded, \( x(t) \) must be bounded on \( [0,T] \), without needing the differential inequality.
  • Another participant notes that \( T \) is not necessarily finite and suggests exploring an inequality involving \( \arctan(x(t)) < \frac{\pi}{2} \) for all \( t \geq 0 \).
  • A different participant points out that the inequality \( \arctan(x(t)) < \frac{\pi}{2} \) is automatically satisfied due to the domain of the principal arctangent, and recommends setting \( f = 1 \) to investigate further.
  • One participant claims to find that \( \arctan(x(t)) + \int_{0}^{T}(x(s)-2)f(s)ds < \frac{\pi}{2} \), suggesting that \( x(t) \) is finite for all \( t \geq 0 \).
  • Another participant presents several proofs related to differential inequalities, outlining theorems and lemmas that may provide insight into the boundedness of solutions.

Areas of Agreement / Disagreement

Participants express differing views on the boundedness of \( x(t) \). While some argue it is bounded based on continuity and the properties of the arctangent function, others raise questions about the implications of the differential inequality and the nature of \( T \). The discussion remains unresolved with multiple competing perspectives.

Contextual Notes

Limitations include the dependence on the definitions of boundedness and continuity, as well as the unresolved nature of the mathematical steps involved in proving boundedness. The implications of the differential inequality are also not fully explored.

Roger1
Messages
3
Reaction score
0
Let x(t) a positive function satisfied the following differential inequality

$\frac{x'(t)}{1+{x(t)}^{2}}+x(t)f(t)<2f(t)$ , (1)

with $0\leq t\leq T$ , $\arctan(0)<\frac{\pi }{2}$ and $f(t)$ is a positive function.

Is x(t) bounded for all $T\geq 0$?
 
Physics news on Phys.org
Hi Roger,

Since a continuous function on a closed and bounded interval is bounded, it follows that $x(t)$ is bounded on $[0,T]$. This does not require the use of the differential inequality.
 
Here T, it is not necessarily finite.
It is interesting to get an inequality of the form
arctan(x(t))< $\frac{\pi}{2}$. for all $t\ge0$.
 
The domain of the principal arctangent is $(-\pi/2, \pi/2)$, so the inequality $\arctan(x(t)) < \frac{\pi}{2}$, $t \ge 0$, is automatically satisfied. To answer whether $x(t)$ is bounded on $[0,\infty)$, first you should set $f = 1$ and see what you get.
 
I find this,
$arctan(x(t))+\int_{0}^{T}(x(s)-2)f(s)ds<\pi /2$.

$x(t)$ is finite for all $t\geq 0$.
 
Here are some proofs I developed for differential inequalities. They may give you some more intuition on how to visualize the answer suggested above. \begin{theorem}
Let $w(t,u)$ be continuous on an open connected set D $\subset$ ${\rm I\!R^{2}}$ and be such that the initial value problem for the scalar equation,
\begin{equation}\label{thm2} u'=w(t,u) \end{equation}
has a unique solution. If $u(t)$ is a solution of (\ref{thm2}) on $a\leq t\leq b$ and $y(t)$ is a solution of __ on $a\leq t\leq b$ with $y(a)\leq u(a)$, then $y(t) \leq u(t)$ for $a\leq t\leq b$.
\end{theorem}

\begin{lemma}
Suppose w(t, u) satisfies the conditions of Theorem 2 such that, $a\leq t\leq b$, with $u\geq 0$, and let $u(t) \geq 0$ be a solution of (\ref{thm2}) on $a\leq t < b$. If $\bff: [a,b) \times \Rn \rightarrow \Rn$ is continuous and
\begin{equation}\label{lemma3} \norm{\bff (t, \bfy )}\leq w(t, \norm{\bfy}), \hspace{.8cm} a\leq t<b, \hspace{.8cm} \bfy \in \Rn , \end{equation}
then the solutions of
\begin{equation} \bfy' = \bff(t,\bfy), \hspace{.80cm} \norm{\bfy (a)|} \leq u(a) \end{equation}
exist on $[a, b)$ and $\norm{ \bfy (t)}\leq u(t)$, with t $\in$ $[a,b).$
\end{lemma}

The following lemma will be used for our differential inequalities. That is, we will use it to help us prove that we can extend our solutions to the boundary values. We will use certain parts of this lemma in our proofs.

Let S be a differentiable function on [a, b].\\
Part A: If S satisfies the differential inequality
\begin{equation}\label{219} S'(t)\leq \lambda S(t), \hspace{.80cm} a\leq t\leq b \end{equation}
where $\lambda$ is a constant and $\lambda >0$, then
\begin{equation}\label{220} S(t)\leq S(a)e^{\lambda (t-a)} \mbox{ for } a\leq t\leq b.\end{equation}
Part B: If S satisfies the differential inequality
\begin{equation}\label{221} S'(t) + \lambda S(t) \leq M_{1} , \hspace{.80cm} a\leq t\leq b.\end{equation}
where $M_{1}>0$ and $\lambda >0$ are constants, then
\begin{equation}\label{222} S(t) \leq \frac{M_{1}}{\lambda} +(S(a) -\frac{M_{1}}{\lambda})e^{\lambda (a-t)} \mbox{ for } a\leq t\leq b. \end{equation}
Part C: If S satisfies the differential inequality
\begin{equation}\label{223} S'(t)\leq (M_{1} + M_{2}e^{\lambda t})S(t), \hspace{.80cm} a\leq t\leq b \end{equation}
where $M_{1}>0, M_{2} >0,$ and $\lambda > 0$ are constants, then
\begin{equation}\label{224} S(t)\leq S(a)e^{M_{1}(t-a)+\frac{M_{2}}{\lambda}(e^{\lambda t} - e^{\lambda a})} \hspace{.1cm} \mbox{ for } a\leq t\leq b.\end{equation}
\end{lemma}

%proof of Lemma 4 part A
We prove each Part of Lemma 4 separately.

\emph{Proof of Part A.}

Let S be a differentiable function on [a,b] where $\lambda$ is a constant and $\lambda >0$.\\
Then for part A, we suppose
\begin{equation}\label{iea} S'(t) \leq \lambda S(t), \hspace{.6cm} a\geq t\geq b .\end{equation}
Rearranging (\ref{iea}) we have,
\begin{equation}\label{mul} 0\geq S'(t) - \lambda S(t) .\end{equation}
Similar to an ordinary differential equation we multiply both sides of (\ref{mul}) by the integrating factor $e^{-\lambda t}$, \cite{Vance}.
This gives us,
\begin{equation}\label{rhs5} 0 \geq S'(t)e^{-\lambda t} - \lambda S(t) e^{-\lambda t} \end{equation}
Notice that the right hand side of (\ref{rhs5}) is the derivative of the product
\begin{equation*} S(t)e^{-\lambda t}. \end{equation*}
Hence we can say,
\begin{equation}\label{hence} 0 \geq S'(t)e^{-\lambda t} - \lambda S(t)e^{-\lambda t}=\frac{d}{dt}(S(t)e^{-\lambda t})
\end{equation}
We can now form the definite integral from $a$ to $t$ on each side of (\ref{hence}) to obtain
\begin{equation} \int_{a}^{t} 0\geq \int_{a}^{t} \frac{d}{dt}(S(t)e^{-\lambda t})dt. \end{equation}
Evaluating both integrands yields,
\begin{equation} 0 \geq S(t)e^{-\lambda t} - S(a)e^{-\lambda a} .\end{equation}
%Solving for $S(t)$, we factor out $e^{-\lambda}$ which gives
%\begin{equation}\label{56} 0 \geq e^{-\lambda}(S(t)e^{t} - S(a)e^{a}) .\end{equation}
Isolating $S(t)$ offers the desired result,
\begin{equation} S(t)\leq S(a) e^{\lambda (t-a)}.\end{equation}
This completes the proof of Part A. \\

% Part B
\emph{Proof of Part B.}\\
Let S be a differentiable function on [a,b] where $\lambda >0$ and $M_{1} >0$ are constants.
Then for part B, we suppose
\begin{equation} S'(t)+\lambda S(t) \leq M_{1}, \hspace{.6cm} a\geq t\geq b, \hspace{.3cm} \mbox{is satisfied.}\end{equation}
Rearranging we have,
\begin{equation}\label{moo} 0 \geq [S'(t)+\lambda S(t) - M_{1}] .\end{equation}
Again, this is similar to an ODE, so we multiply both sides of the above by the integrating factor $e^{\lambda t}$.
This gives us,
\begin{equation}\label{pab} 0 \geq e^{\lambda t}[S'(t) + \lambda S(t) - M_{1}]. \end{equation}
Note that the right hand side of (\ref{pab}) is
\begin{equation}\label{mom2} \frac{d}{dt} [S(t)e^{\lambda t} - \frac{M_{1}}{\lambda}e^{\lambda t}]. \end{equation}
Thus we can rewrite (\ref{pab}) as
\begin{equation}\label{keira} 0 \geq \frac{d}{dt} [S(t)e^{\lambda t} - \frac{M_{1}}{\lambda}e^{\lambda t}].\end{equation}
We now form the definite integral from $a$ to $t$ on each side of (\ref{keira}),
\begin{equation}\label{99} \int_{a}^{t} 0 \geq \int_{a}^{t}\frac{d}{dt} [S(t)e^{\lambda t} - \frac{M_{1}}{\lambda}e^{\lambda t}]dt. \end{equation}
Evaluating the definite integrals in (\ref{99}), we obtain,
\begin{equation}\label{24} 0 \geq (S(t) -\frac{M_{1}}{\lambda})e^{\lambda t} - (S(a)-\frac{M_{1}}{\lambda})e^{\lambda a}.\end{equation}
%Simplifying (\ref{24}) have,
%\begin{equation} (S(t)-\frac{M_{1}}{\lambda})e^{\lambda t} \leq (S(a)-\frac{M_{1}}{\lambda})e^{\lambda a}\end{equation}
Isolating $S(t)$ gives the desired result,
\begin{equation} S(t)\leq \frac{M_{1}}{\lambda}+(S(a)-\frac{M_{1}}{\lambda})e^{\lambda (a-t)}. \end{equation}
This completes the proof of part B.

% Part C
\emph{Proof of Part C.}\\
Let S be a differentiable function on [a,b] where $\lambda >0$, $M_{1} >0$, and $M_{2}>0$ are constants.
Then for part C, we suppose,
\begin{equation}\label{333} S'(t) \leq (M_{1} + M_{2}e^{\lambda t})S(t), \hspace{.60cm} a\leq t\leq b \hspace{.3cm} \mbox{is satisfied.} \end{equation}
Rearranging (\ref{333}) we have,
\begin{equation}\label{alice} 0 \geq S'(t)-(M_{1}+M_{2}e^{\lambda t})S(t).\end{equation}
Multiplying both sides of (\ref{alice}) by the integrating factor $e^{-(M_{1}t+ \frac{M_{2}}{\lambda} e^{\lambda t})}$ we have,
\begin{equation}\label{chain} 0\geq e^{-{(M_{1}t+ \frac{M_{2}}{\lambda} e^{\lambda t)}}}[S'(t) -(M_{1} + M_{2}e^{\lambda t})S(t)] \end{equation}
Note that the right hand side of (\ref{chain}) is the derivative of the product
\begin{equation}\label{deriv} [ e^{-{(M_{1} t+\frac{M_{2}}{\lambda}e^{\lambda t})}}S(t)] .\end{equation}
Thus we can rewrite (\ref{chain}) as
\begin{equation}\label{408} 0 \geq \frac{d}{dt} [ e^{-{(M_{1} t+\frac{M_{2}}{\lambda}e^{\lambda t})}}S(t) ] .\end{equation}
We now form the definite integral from $a$ to $t$ on each side of (\ref{408}) to obtain
\begin{equation}\label{408} \int_{a}^{t} 0 \geq \int_{a}^{t}\frac{d}{dt} [ e^{-{(M_{1} t+\frac{M_{2}}{\lambda}e^{\lambda t})}}S(t)]dt\ .\end{equation}
Evaluating both integrands gives us
\begin{equation} 0 \geq [e^{-{(M_{1} t+\frac{M_{2}}{\lambda}e^{\lambda t})}}S(t)] - [e^{-{(M_{1} a+\frac{M_{2}}{\lambda}e^{\lambda a})}}S(a)] .\end{equation}
Isolating $S(t)$ offers the desired result,
\begin{equation}\label{partbb} S(t) \leq S(a)e^{M_{1}(t-a)+\frac{M_{2}}{\lambda}(e^{\lambda t}- e^{\lambda a})}. \end{equation}
This completes the proof of Lemma 4 Part C. \\
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K