Breaking the Light Speed Barrier?

Click For Summary
SUMMARY

The discussion centers on the feasibility of transmitting binary data faster than the speed of light using quantum entanglement. Participants conclude that while entangled particles exhibit instantaneous correlations, this phenomenon does not allow for faster-than-light communication. Specifically, altering one particle does not convey usable information to its entangled counterpart, as the results remain random and cannot be manipulated for data transmission. The consensus is that quantum entanglement cannot be harnessed for practical communication beyond light speed.

PREREQUISITES
  • Understanding of quantum entanglement principles
  • Familiarity with quantum mechanics terminology
  • Knowledge of measurement effects in quantum systems
  • Basic grasp of information theory
NEXT STEPS
  • Research the implications of quantum entanglement on information theory
  • Explore the concept of quantum teleportation and its limitations
  • Learn about Bell's theorem and its relevance to entanglement
  • Investigate current advancements in quantum computing and communication technologies
USEFUL FOR

Physicists, quantum computing researchers, and anyone interested in the implications of quantum mechanics on communication technologies.

SWIRF
Messages
2
Reaction score
0
If we have a pair of super-asymmetrical entwined particles, and move them a light year away so that they retain their quantum entanglement, and we set a clockwise spin as 0 and a counter-clockwise spin as 1. Would it be possible to transmit binary data faster than the speed of light?

If we hold that quantum entanglement has no distance limitations and changes to one happen instantaneously to the other, would that not be a method for transmitting data faster than the speed of light? Even if it is just a binary operation. But what if we had a cluster of these particles?
could 100 entwined pairs on each side be used to multithread binary data faster than light speed?
or a billion?
 
Physics news on Phys.org
SWIRF said:
1. Would it be possible to transmit binary data faster than the speed of light?
No.

Indeed, altering one pair of entangled particles does nothing to the other, just as dying one sock of a pair doesn't change the other.
 
"For example, if two entangled particles are measured in quick succession, the measurement of one particle can instantaneously affect the other particle, no matter how far apart they are. This is because the particles become correlated, meaning that if one particle changes its state, the other particle will undergo the same change. For example, if you measure the spin direction of one entangled particle and it's to the right, you can know that the other entangled particle's spin direction will be to the left. "

SPACE.COM


"

Is quantum entanglement faster than light?​

Asking about speed is a very interesting question. You might as a "normal human being" think that if I measure the polarization of one photon, that sets the state of the other photon. That thinking is fine, as long as the other photon measurement happens after the first measurement. But there is already a problem. If that second photon is measured on Pluto, it might take 6 hours for light to get there, so because information cannot travel faster than the speed of light, the second photon wouldn't know what state it should be. But it turns out that that second measurement will always match the first no matter when it was measured. So, it seems like the necessary information must have traveled faster than the speed of light. Big problem, but entanglement's weirdness gets it out of an astronomical speeding ticket.

In the case of entanglement, the information that appears at your Pluto measurement station is not useful information (in the ordinary sense). It is random just like the random result that came out of that first measurement (but matching random). So, the key point is that you could not take advantage of news of a crop failure and send a buy or sell order to your stockbroker on Pluto at faster than the speed of light before the Plutonian markets had time to adjust. It is only "randomness" that appears to travel faster than light, so the galactic traffic cop just lets you off with a warning."

----
the information wouldn't be useless if we assigned binary states to spin states or polarization states.
If we found a way to dye one of these socks, the other would in fact change color as well :)
 
Last edited:
@SWIRF your space.com reference is a pop science article. Those are not good sources for learning actual science. @Vanadium 50 gave you the correct answer to your question: you can't use entanglement to send information faster than light.
 
  • Like
Likes   Reactions: Vanadium 50 and Dale
Moderator's note: Thread level changed to "I".
 
The OP question has been answered. Thread closed.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 276 ·
10
Replies
276
Views
13K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K