- #1

fab13

- 312

- 6

Thread moved from the technical forums, so no Homework Template is shown

as homework, I have to do the following exercise:

Bremstrahlung emission :

We are interested in ionized plasma of density ##n##, at temperature ##T## with ions of charge number ##Z##.

1. Explain the physical origin of bremstrahlung radiation

2. Represent the expected spectra (shape and remarkable/points values)

3. Explain how the total power emitted depend of properties of plasma.

I would like to make things clearer :

1) For question 1), I saw that the bremsstrahlung radiation corresponds to the radiation emitted by a particle in deceleration, hence the name of radiation "braking".

What if the particle is accelerating: are we also talking about radiation bremsstrahlung?

Indeed, if we consider that the particle has a centripetal acceleration, as in the case of displacement in a magnetic field, we speak rather of synchrotron radiation, is that correct?

2) For question 2),

3) Finally, the question n ° 3) concerns the expression of the total power emitted per unit of volume, according to what I have on Wiki, this quantity is equal to :

##P_{\mathrm {Br} }[{\textrm {W/m}}^{3}]=\left[{n_{e} \over 7.69\times 10^{18}{\textrm {m}}^{-3}}\right]^{2}T_{e}[{\textrm {eV}}]^{1/2}Z_{\mathrm {eff}##

Here the formula :

The total power would then depend of : the temperature ##T## of the plasma, its density ##n## and the number of charge ##Z## of the ions of the plasma: is this correct?

Thanks for your help

Bremstrahlung emission :

We are interested in ionized plasma of density ##n##, at temperature ##T## with ions of charge number ##Z##.

1. Explain the physical origin of bremstrahlung radiation

2. Represent the expected spectra (shape and remarkable/points values)

3. Explain how the total power emitted depend of properties of plasma.

I would like to make things clearer :

1) For question 1), I saw that the bremsstrahlung radiation corresponds to the radiation emitted by a particle in deceleration, hence the name of radiation "braking".

What if the particle is accelerating: are we also talking about radiation bremsstrahlung?

Indeed, if we consider that the particle has a centripetal acceleration, as in the case of displacement in a magnetic field, we speak rather of synchrotron radiation, is that correct?

2) For question 2),

**we are asked to qualitatively represent the typical form of the bremsstrahlung spectra (with its points and remarkable values): someone could tell me what is this expected spectra and the values / points to to retain for this spectra (a typical spectra)**?3) Finally, the question n ° 3) concerns the expression of the total power emitted per unit of volume, according to what I have on Wiki, this quantity is equal to :

##P_{\mathrm {Br} }[{\textrm {W/m}}^{3}]=\left[{n_{e} \over 7.69\times 10^{18}{\textrm {m}}^{-3}}\right]^{2}T_{e}[{\textrm {eV}}]^{1/2}Z_{\mathrm {eff}##

Here the formula :

The total power would then depend of : the temperature ##T## of the plasma, its density ##n## and the number of charge ##Z## of the ions of the plasma: is this correct?

Thanks for your help