Cal3 cyliderical spherical coords

  • Thread starter Thread starter Eunix1992
  • Start date Start date
  • Tags Tags
    Spherical
Eunix1992
Messages
5
Reaction score
0

Homework Statement



find the volume between the cone x=√y^2+z^2, and the spherex^2+y^2+z^2=196

Homework Equations





The Attempt at a Solution


for x=√y^2+z^2, I got x^2=y^2+z^2, and 2x^2=196, x=98, for this, I don't know what i am supposed to do then. Thanks!
 
Physics news on Phys.org
sorry,. x^2=98. but what can i do then? thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top