Calculate 11c-5d: Solving Exercise

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around solving an exercise involving the multiplicative groups $\mathbb{Z}^{*}_{10}$ and $\mathbb{Z}^{*}_{22}$. Participants explore the properties of these groups, specifically focusing on the order of elements and the calculation of the expression $11c-5d$ based on the results of exponentiation within these groups.

Discussion Character

  • Technical explanation, Conceptual clarification, Debate/contested

Main Points Raised

  • One participant presents the exercise and calculates that $c=3$ and $d=13$, leading to the conclusion that $11c-5d=-32$.
  • Another participant agrees with the initial calculation and suggests verifying the order of $[7]_{22}$ by checking $[7]_{22}^2$ and $[7]_{22}^5$.
  • A follow-up question is raised about why checking these specific powers is sufficient to determine the order of $[7]_{22}$.
  • It is noted that the order of $\mathbb{Z}_{22}$ is $10$, and thus the order of $[7]$ must divide $10$, implying that if it is not $2$ or $5$, it must be $10.

Areas of Agreement / Disagreement

There is agreement on the correctness of the initial calculation, but the discussion regarding the order of $[7]_{22}$ introduces a conceptual clarification that remains open for further exploration.

Contextual Notes

Participants reference Lagrange's theorem and properties of group orders, but the discussion does not resolve the implications of these properties fully.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the follwong exercise:

Notice that the multiplicative group $\mathbb{Z}^{*}_{10} \times \mathbb{Z}^{*}_{22}$ is cyclic and consider its generator $([a]_{10},_{22})$ with the lowest possible positive integers $a$ and $b$. Let $([a]_{10},_{22})^{33}=([c]_{10},[d]_{22}), 1 \leq c \leq 10, 1<d<22$.Which is the value of $11c-5d$ ?

$$\mathbb{Z}^{*}_{10}= \{ 1,3,7,9\}$$
$$[3]^1=[3],[3]^2=[9],[3]^3=[27]=[7], [3]^4=[3]^3 \cdot [3]=[7 \cdot 3]=[1] \checkmark $$
$$\text{So, } a=3$$

$$\mathbb{Z}^{*}_{22}= \{ 1,3,5,7,9,13,15,17,19,21\}$$

$$[3]^1=[3], [3]^2=[9], [3]^3=[27]=[6] \times$$

$$[5]^1=[5], [5]^2=[25]=[3] , [5]^3=[5]^2 \cdot [5]=[15], [5]^4=[15 \cdot 5]=[75]=[9] , [5]^5=[9 \cdot 5]=[45]=[1] , [5]^6=[5] \times $$

$$[7]^1=[7], [7]^2=[49]=[5], [7]^3=[5 \cdot 7]=[35]=[13], [7]^4=[13 \cdot 7]=[91]=[3], [7]^5=[3 \cdot 7]=[21], [7]^5=[21 \cdot 7]=[147]=[15], [7]^6=[15 \cdot 7]=[17], [7]^7=[17 \cdot 7]=[9], [7]^8=[9 \cdot 7]=[19], [7]^9=[19 \cdot 7]=[1] \checkmark $$

$$b=7$$

$$([3]_{10},[7]_{22})^{33}=([c]_{10}, [d]_{22}) \Rightarrow ([c]_{10}, [d]_{22})=([3^{33}]_{10},[7^{33}]_{22})$$

$(3,10)=1, \phi(10)=\phi(2 \cdot 5)=10(1-\frac{1}{2})(1-\frac{1}{5})=10 \cdot \frac{1}{2} \cdot \frac{4}{5}=4$

$$\text{ So from Euler's Theorem: } 3^4 \equiv 1 \pmod{10}$$

$$3^{33} \equiv 3^{4 \cdot 8+1} \equiv (3^4)^8 \cdot 3 \equiv 3 \pmod{10}$$

$(7,22)=1 , \phi(22)=\phi(2 \cdot 11)=22(1-\frac{1}{2})(1-\frac{1}{11})=10$

$\text{ So,from Euler's Theorem: } 7^{10} \equiv 1 \pmod{ 22 }$

$$7^{33} \equiv 7^{3 \cdot 10+3} \equiv (7^{10})^3 \cdot 7^3 \equiv 13 \pmod{22}$$

$$ \text{ We conclude that: } [c]_{10}=[3]_{10} \text{ and } [d]_{22}=[13]_{22} \Rightarrow c=3+10k, k \in \mathbb{Z} \text{ and } d=13+22l, l \in \mathbb{Z} \Rightarrow c=3, d=13$$

Therefore, $11c-5d=11 \cdot 3-5 \cdot 13=33-65=-32$

Could you tell me if it is right? (Thinking)(Thinking)
 
Physics news on Phys.org
Hi! (Happy)

It is right! (Sun)

If you're interested, I have a little optimization for you.
You want to find out if $[7]_{22}$ has order $10$.
To do so, it suffices to verify $[7]_{22}^2$ and $[7]_{22}^5$.
If both are different from $1$, the order of $[7]_{22}$ is $10$. (Nerd)
 
I like Serena said:
Hi! (Happy)

It is right! (Sun)

If you're interested, I have a little optimization for you.
You want to find out if $[7]_{22}$ has order $10$.
To do so, it suffices to verify $[7]_{22}^2$ and $[7]_{22}^5$.
If both are different from $1$, the order of $[7]_{22}$ is $10$. (Nerd)

Why does it suffice to verify that $[7]_{22}^2$ and $[7]_{22}^5$ are different from $1$,in order to show that the order of $[7]_{22}$ is $10$? (Thinking)(Thinking)
 
evinda said:
Why does it suffice to verify that $[7]_{22}^2$ and $[7]_{22}^5$ are different from $1$,in order to show that the order of $[7]_{22}$ is $10$? (Thinking)(Thinking)

The order of $\mathbb Z_{22}$ is $\phi(22)=10$.
That means that the order of $[7]$ must divide $10$ (known as a consequence of Lagrange's theorem). (Wasntme)
If we can be sure that it isn't $2$ or $5$, it must be $10$.
 
I like Serena said:
The order of $\mathbb Z_{22}$ is $\phi(22)=10$.
That means that the order of $[7]$ must divide $10$ (known as a consequence of Lagrange's theorem). (Wasntme)
If we can be sure that it isn't $2$ or $5$, it must be $10$.

I understand...thank you very much! (Smile)
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 26 ·
Replies
26
Views
1K