Calculate 3D Fourier Transform for f(x) = (1 + |x|2)-1 on ℝ3

Click For Summary
The discussion focuses on calculating the 3D Fourier transform of the function f(x) = (1 + |x|²)⁻¹. Participants set up the integral but express uncertainty about its solvability, particularly after simplifying it to an angular integral. There is a mention of using residue calculus to approach the problem, with hopes of finding a result similar to the 1D Fourier transform. Some believe the integral may not be easily integrable, while others suggest it is manageable with careful consideration of poles and contour integration. Overall, the conversation highlights the challenges and methods involved in solving this Fourier transform.
Ansatz7
Messages
29
Reaction score
0
Homework Statement
Calculate the Fourier transform of f(x) = (1 + |x|2)-1, x\inℝ3

The attempt at a solution

As far as I can tell, the integral we are supposed to set up is:

Mod note: Fixed your equation. You don't want to mix equation-writing methods. Just stick to LaTeX.
$$\int \frac{e^{-2\pi i (\vec{k}\cdot\vec{x})}}{1+|\vec{x}|^2}dV = \int \frac{e^{-2\pi i r(k_1\sin\theta\cos\phi + k_2 \sin\theta\sin\phi + k_3\cos\theta)}}{1+r^2} r^2\sin\theta\,d\theta\,d\phi\,dr$$but I have no idea how to perform this integral. Any ideas appreciated! (Also, sorry about the fractions - I have no idea why they aren't working because I have no tex experience).
 
Last edited by a moderator:
Physics news on Phys.org
The first step is to use that your f(x) doesn't depend on the direction of the vector x. So the Fourier transform won't depend on the direction of k. So you can choose a k that points along the z-axis. That simplifies thing a lot.
 
*facepalm* Of course, that at least makes the angular part of the integral simple. After the angular integral I ended up with:
$$\frac{2}{k}\int \frac{r\sin2\pi kr}{1+r^2}\,dr$$

I don't think this is integrable, but that makes sense based on the way the question was posed.I think it ought to be square integrable though. I tried to compute this using residues - I was hoping to get something analogous to the 1D Fourier transform

$$f(x) = \frac{1}{1 + x^2},
\hat{f}(k) = e^{-2\pi x|k|}$$

but from the look of the residue I have so far it doesn't seem like it will be so aesthetically pleasing. At any rate, thanks for your help, and thanks vela for editing my equation. I've never used LaTex so I was guessing.
 
Ansatz7 said:
*facepalm* Of course, that at least makes the angular part of the integral simple. After the angular integral I ended up with:
$$\frac{2}{k}\int \frac{r\sin2\pi kr}{1+r^2}\,dr$$

I don't think this is integrable, but that makes sense based on the way the question was posed.I think it ought to be square integrable though. I tried to compute this using residues - I was hoping to get something analogous to the 1D Fourier transform

$$f(x) = \frac{1}{1 + x^2},
\hat{f}(k) = e^{-2\pi x|k|}$$

but from the look of the residue I have so far it doesn't seem like it will be so aesthetically pleasing. At any rate, thanks for your help, and thanks vela for editing my equation. I've never used LaTex so I was guessing.

I'm not checking the details here, so I hope you are keeping track of all of the signs and factors. But that looks integrable to me. There are poles at i and -i. You'll have to split the sin up into exponentials so you can decide which half-plane to close the contours in, but it looks routine to me.
 
Deleted
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
5
Views
2K