Calculate $(ab,p^4)$: Prime Number Exercise

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The exercise involves calculating the greatest common divisor (gcd) of the product \(ab\) and \(p^4\) given the conditions \((a,p^2)=p\) and \((b,p^3)=p^2\). The analysis shows that \(a\) contains one factor of the prime \(p\) and \(b\) contains two factors of \(p\), leading to \(ab\) having three factors of \(p\). Consequently, the gcd is determined to be \(\gcd(ab, p^4) = p^3\).

PREREQUISITES
  • Understanding of prime factorization
  • Knowledge of greatest common divisor (gcd) concepts
  • Familiarity with notation in number theory, specifically \((a, b)\)
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of gcd and lcm in number theory
  • Explore prime factorization techniques in algebra
  • Learn about the implications of gcd in modular arithmetic
  • Investigate advanced topics in number theory, such as the Euclidean algorithm
USEFUL FOR

Mathematics students, educators, and anyone interested in number theory or preparing for competitive exams involving prime factorization and gcd calculations.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! :o
I am given the following exercise:
If $p$ is a prime and $(a,p^2)=p$,$(b,p^3)=p^2$,find $(ab,p^4)$.

$p|a \Rightarrow a=k \cdot p , k\in \mathbb{Z}$
$p^2|b \Rightarrow b=l \cdot p^2 , l \in \mathbb{Z}$

Let $(ab,p^4)=d>1$,then $d$ will have a prime divisor, $q$
$q|d , d|ab \Rightarrow q|ab \Rightarrow q|a \text{ or } q|b$
Also, $d|p^4 \Rightarrow q|p^4 \Rightarrow q=p$

Is it right so far?And how can I continue??
 
Mathematics news on Phys.org
evinda said:
Hey! :o
I am given the following exercise:
If $p$ is a prime and $(a,p^2)=p$,$(b,p^3)=p^2$,find $(ab,p^4)$.

$p|a \Rightarrow a=k \cdot p , k\in \mathbb{Z}$
$p^2|b \Rightarrow b=l \cdot p^2 , l \in \mathbb{Z}$

Let $(ab,p^4)=d>1$,then $d$ will have a prime divisor, $q$
$q|d , d|ab \Rightarrow q|ab \Rightarrow q|a \text{ or } q|b$
Also, $d|p^4 \Rightarrow q|p^4 \Rightarrow q=p$

Is it right so far?And how can I continue??

Hi! :)

It is right so far.

But to get further, I would try to identify how many factors $p$ are contained in $a$ exactly.
And also how many factors $p$ there are in $b$.

How many factors $p$ does that make in $ab$?
 
I like Serena said:
Hi! :)

It is right so far.

But to get further, I would try to identify how many factors $p$ are contained in $a$ exactly.
And also how many factors $p$ there are in $b$.

How many factors $p$ does that make in $ab$?

In $a$, there is $1$ factor $p$,in $b$ there are $2$ factors $p$.So,in $ab$ there are $3$ factors $p$..What does this mean?? :confused: Or am I wrong??
 
evinda said:
In $a$, there is $1$ factor $p$,in $b$ there are $2$ factors $p$.So,in $ab$ there are $3$ factors $p$..What does this mean?? :confused: Or am I wrong??

That is exactly right. :D

It means that $ab$ has exactly 3 factors of the prime $p$ and possibly some other prime factors.
The consequence is that $\gcd(ab, p^4) = p^3$.
 
I like Serena said:
That is exactly right. :D

It means that $ab$ has exactly 3 factors of the prime $p$ and possibly some other prime factors.
The consequence is that $\gcd(ab, p^4) = p^3$.

I understand..thank you very much! :cool:
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
48
Views
5K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
Replies
3
Views
2K
Replies
2
Views
3K