MHB Calculate $\angle ADC$ in a Convex Quadrilateral

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Adc
Click For Summary
In the discussion about calculating angle $\angle ADC$ in convex quadrilateral $ABCD$, the angles given are $\angle CBD=10^{\circ}$, $\angle CAD=20^{\circ}$, $\angle ABD=40^{\circ}$, and $\angle BAC=50^{\circ}$. A participant pointed out that the initial diagram did not represent a convex quadrilateral correctly, suggesting an alternative configuration. The trigonometric approach used in the solution was nearly correct, but the final calculation needed adjustment. The corrected conclusion is that $\angle ADC$ measures $100^{\circ}$. The discussion emphasizes the importance of accurate geometric representation in solving angle problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In a convex quadrilateral $ABCD$ we are given that $\angle CBD=10^{\circ},\,\angle CAD=20^{\circ},\,\angle ABD=40^{\circ},\, \angle BAC=50^{\circ}$.

Find the angle $\angle ADC$.
 
Mathematics news on Phys.org
Re: Find \$\angle ADC\$

My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.

\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}

We then have

$C=\left(k, -k\tan 10^{\circ}\right)\\D=\left(\dfrac{k}{2\sin 110^{\circ}\cos 40^{\circ}}, 0\right)=\left(\dfrac{k}{\sin 150^{\circ}+\sin 70^{\circ}}, 0\right)=\left(\dfrac{k}{\frac{1}{2}+\cos 20^{\circ}}, 0\right)$

$\begin{align*}\text{Gradient of } l_{CD}&=\dfrac{-k\tan 10^{\circ}}{k\left(1-\dfrac{1}{\frac{1}{2}+\cos 20^{\circ}}\right)}\\&=\dfrac{-\tan 10^{\circ}\left(\frac{1}{2}+\cos 20^{\circ}\right)}{\cos 20^{\circ}-\dfrac{1}{2}}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-1)}{4\cos^2 10^{\circ}-3}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-(\sin^2 10^{\circ} +\cos^2 10^{\circ}))}{4\cos^2 10^{\circ}-3(\sin^2 10^{\circ} +\cos^2 10^{\circ})}\\&=\dfrac{-\tan 10^{\circ}(3\cos^2 10^{\circ}-\sin^2 10^{\circ})}{\cos^2 10^{\circ}-3\sin^2 10^{\circ}}\\&=\dfrac{-\tan 10^{\circ}(3-\tan^2 10^{\circ})}{1-3\tan^2 10^{\circ}}\\&=-\tan (3\times 10)^{\circ}\\&=\tan 150^{\circ}\end{align*}$

This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.

But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
 
Re: Find \$\angle ADC\$

anemone said:
My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.

\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}

We then have

$C=\left(k, -k\tan 10^{\circ}\right)\\D=\left(\dfrac{k}{2\sin 110^{\circ}\cos 40^{\circ}}, 0\right)=\left(\dfrac{k}{\sin 150^{\circ}+\sin 70^{\circ}}, 0\right)=\left(\dfrac{k}{\frac{1}{2}+\cos 20^{\circ}}, 0\right)$

$\begin{align*}\text{Gradient of } l_{CD}&=\dfrac{-k\tan 10^{\circ}}{k\left(1-\dfrac{1}{\frac{1}{2}+\cos 20^{\circ}}\right)}\\&=\dfrac{-\tan 10^{\circ}\left(\frac{1}{2}+\cos 20^{\circ}\right)}{\cos 20^{\circ}-\dfrac{1}{2}}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-1)}{4\cos^2 10^{\circ}-3}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-(\sin^2 10^{\circ} +\cos^2 10^{\circ}))}{4\cos^2 10^{\circ}-3(\sin^2 10^{\circ} +\cos^2 10^{\circ})}\\&=\dfrac{-\tan 10^{\circ}(3\cos^2 10^{\circ}-\sin^2 10^{\circ})}{\cos^2 10^{\circ}-3\sin^2 10^{\circ}}\\&=\dfrac{-\tan 10^{\circ}(3-\tan^2 10^{\circ})}{1-3\tan^2 10^{\circ}}\\&=-\tan (3\times 10)^{\circ}\\&=\tan 150^{\circ}\end{align*}$

This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.

But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
How do we know that AC is perpendicular to BD
 
Re: Find \$\angle ADC\$

kaliprasad said:
How do we know that AC is perpendicular to BD

Hi kaliprasad!

Notice that $\angle A=50^{\circ}$ and $\angle B=40^{\circ}$, if we extend the lines $AC$ and $BD$, to form a triangle, we see that we will get a right-angled triangle.
 
Re: Find \$\angle ADC\$

anemone said:
My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.

\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}

We then have

$C=\left(k, -k\tan 10^{\circ}\right)\\D=\left(\dfrac{k}{2\sin 110^{\circ}\cos 40^{\circ}}, 0\right)=\left(\dfrac{k}{\sin 150^{\circ}+\sin 70^{\circ}}, 0\right)=\left(\dfrac{k}{\frac{1}{2}+\cos 20^{\circ}}, 0\right)$

$\begin{align*}\text{Gradient of } l_{CD}&=\dfrac{-k\tan 10^{\circ}}{k\left(1-\dfrac{1}{\frac{1}{2}+\cos 20^{\circ}}\right)}\\&=\dfrac{-\tan 10^{\circ}\left(\frac{1}{2}+\cos 20^{\circ}\right)}{\cos 20^{\circ}-\dfrac{1}{2}}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-1)}{4\cos^2 10^{\circ}-3}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-(\sin^2 10^{\circ} +\cos^2 10^{\circ}))}{4\cos^2 10^{\circ}-3(\sin^2 10^{\circ} +\cos^2 10^{\circ})}\\&=\dfrac{-\tan 10^{\circ}(3\cos^2 10^{\circ}-\sin^2 10^{\circ})}{\cos^2 10^{\circ}-3\sin^2 10^{\circ}}\\&=\dfrac{-\tan 10^{\circ}(3-\tan^2 10^{\circ})}{1-3\tan^2 10^{\circ}}\\&=-\tan (3\times 10)^{\circ}\\&=\tan 150^{\circ}\end{align*}$

This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.

But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
[sp]Very nice solution, anemone! My only criticism is that the quadrilateral $ABCD$ is supposed to be convex. If the vertices $A,B,C,D$ are to be taken in that order then your quadrilateral is not convex. I think that the diagram should look more like this:
[TIKZ] [scale=0.75]
\coordinate[label=left:A] (A) at (-10,0);
\coordinate[label=right:B] (B) at (0,12);
\coordinate[label=right:C] (C) at (2,0);
\coordinate[label=below right: D] (D) at (0,-3.5);
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (C);
\draw (B) -- (D);
\node at (0.7,10.5) {$\leftarrow 10^{\circ}$};
\node at (-8,-0.3) {$20^{\circ}$};
\node at (-0.5,10.5) {$40^{\circ}$};
\node at (-8.5,0.5) {$50^{\circ}$};
\draw (0,0) rectangle +(-0.5, 0.5);
[/TIKZ]
Your trigonometric argument then works almost exactly as before, but the final result is that $\angle ADC$ is then $70^{\circ} + 30^{\circ}$ instead of $70^{\circ}-30^{\circ}$. So I think that the answer should be $100^\circ$.[/sp]
 
Re: Find \$\angle ADC\$

I initially struggled as I didn't know for sure if the vertices $A,B,C,D$ are to be taken in that order or not...after I saw there was no reply to this challenge, I decided to go with my hunch that it is okay they are not ordered in alphabetical manner. Now, the more I read it, the more I think you are right, so, thanks so much to Opalg for pointing it out...

Here is the amended solution (with much more neater trigonometric argument(Sun)):
[TIKZ] [scale=0.75]
\coordinate[label=left:A] (A) at (-10,0);
\coordinate[label=right:B] (B) at (0,12);
\coordinate[label=right:C] (C) at (2,0);
\coordinate[label=below right: D] (D) at (0,-3.5);
\coordinate[label=below right:P] (P) at (0,0);
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (C);
\draw (B) -- (D);
\node at (0.7,10.5) {$\leftarrow 10^{\circ}$};
\node at (-8,-0.3) {$20^{\circ}$};
\node at (-0.5,10.5) {$40^{\circ}$};
\node at (-8.5,0.5) {$50^{\circ}$};
\draw (0,0) rectangle +(-0.5, 0.5);
[/TIKZ]Let $A$ be the origin point in the Cartesian plan, $AC$ and $BD$ meet at $P$ and $AP=k$.

We then have

$D=\left(k, -k\tan 20^{\circ}\right)\\C=\left(k\left(1+\dfrac{\tan 10^{\circ}(1-\tan^2 20^{\circ})}{2\tan 20^{\circ}}\right), 0\right)=\left(k\left(\dfrac{2\tan 20^{\circ}+\tan 10^{\circ}(1-\tan^2 20^{\circ})}{2\tan 20^{\circ}}\right), 0\right)$

$\begin{align*}\text{Gradient of } l_{CD}&=\dfrac{-k\tan 20^{\circ}}{k\left(1-\dfrac{2\tan 20^{\circ}+\tan 10^{\circ}(1-\tan^2 20^{\circ})}{2\tan 20^{\circ}}\right)}\\&=\dfrac{-\tan 20^{\circ}\left(2\tan 20^{\circ}\right)}{-\tan 10^{\circ}(1-\tan^2 20^{\circ})}\\&=\tan20^{\circ}\tan40^{\circ} \tan80^{\circ}\\&=\tan (3\times 20)^{\circ}\\&=\tan60^{\circ}\end{align*}$

This means $\angle PCD=60^{\circ}$ and therefore $\angle PDC=30^{\circ}$.

This implies $\angle ADC=70^{\circ}+30^{\circ}=100^{\circ}$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K