Calculate $\angle ADC$ in a Convex Quadrilateral

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Adc
Click For Summary
SUMMARY

In the convex quadrilateral $ABCD$, the angles are defined as follows: $\angle CBD = 10^{\circ}$, $\angle CAD = 20^{\circ}$, $\angle ABD = 40^{\circ}$, and $\angle BAC = 50^{\circ}$. The correct calculation for $\angle ADC$ is determined to be $100^{\circ}$ after adjusting for the convexity of the quadrilateral. The initial assumption of the angle calculation was incorrect due to the misinterpretation of the quadrilateral's shape.

PREREQUISITES
  • Understanding of basic geometric principles and properties of convex quadrilaterals.
  • Familiarity with angle relationships in polygons.
  • Knowledge of trigonometric functions and their applications in geometry.
  • Ability to interpret geometric diagrams accurately.
NEXT STEPS
  • Study the properties of convex quadrilaterals in detail.
  • Learn about angle chasing techniques in geometry.
  • Explore trigonometric identities and their applications in solving geometric problems.
  • Practice solving problems involving angles in polygons using geometric diagrams.
USEFUL FOR

Mathematicians, geometry enthusiasts, and students preparing for competitive exams who are interested in solving problems related to angles in convex quadrilaterals.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In a convex quadrilateral $ABCD$ we are given that $\angle CBD=10^{\circ},\,\angle CAD=20^{\circ},\,\angle ABD=40^{\circ},\, \angle BAC=50^{\circ}$.

Find the angle $\angle ADC$.
 
Mathematics news on Phys.org
Re: Find \$\angle ADC\$

My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.

\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}

We then have

$C=\left(k, -k\tan 10^{\circ}\right)\\D=\left(\dfrac{k}{2\sin 110^{\circ}\cos 40^{\circ}}, 0\right)=\left(\dfrac{k}{\sin 150^{\circ}+\sin 70^{\circ}}, 0\right)=\left(\dfrac{k}{\frac{1}{2}+\cos 20^{\circ}}, 0\right)$

$\begin{align*}\text{Gradient of } l_{CD}&=\dfrac{-k\tan 10^{\circ}}{k\left(1-\dfrac{1}{\frac{1}{2}+\cos 20^{\circ}}\right)}\\&=\dfrac{-\tan 10^{\circ}\left(\frac{1}{2}+\cos 20^{\circ}\right)}{\cos 20^{\circ}-\dfrac{1}{2}}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-1)}{4\cos^2 10^{\circ}-3}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-(\sin^2 10^{\circ} +\cos^2 10^{\circ}))}{4\cos^2 10^{\circ}-3(\sin^2 10^{\circ} +\cos^2 10^{\circ})}\\&=\dfrac{-\tan 10^{\circ}(3\cos^2 10^{\circ}-\sin^2 10^{\circ})}{\cos^2 10^{\circ}-3\sin^2 10^{\circ}}\\&=\dfrac{-\tan 10^{\circ}(3-\tan^2 10^{\circ})}{1-3\tan^2 10^{\circ}}\\&=-\tan (3\times 10)^{\circ}\\&=\tan 150^{\circ}\end{align*}$

This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.

But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
 
Re: Find \$\angle ADC\$

anemone said:
My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.

\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}

We then have

$C=\left(k, -k\tan 10^{\circ}\right)\\D=\left(\dfrac{k}{2\sin 110^{\circ}\cos 40^{\circ}}, 0\right)=\left(\dfrac{k}{\sin 150^{\circ}+\sin 70^{\circ}}, 0\right)=\left(\dfrac{k}{\frac{1}{2}+\cos 20^{\circ}}, 0\right)$

$\begin{align*}\text{Gradient of } l_{CD}&=\dfrac{-k\tan 10^{\circ}}{k\left(1-\dfrac{1}{\frac{1}{2}+\cos 20^{\circ}}\right)}\\&=\dfrac{-\tan 10^{\circ}\left(\frac{1}{2}+\cos 20^{\circ}\right)}{\cos 20^{\circ}-\dfrac{1}{2}}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-1)}{4\cos^2 10^{\circ}-3}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-(\sin^2 10^{\circ} +\cos^2 10^{\circ}))}{4\cos^2 10^{\circ}-3(\sin^2 10^{\circ} +\cos^2 10^{\circ})}\\&=\dfrac{-\tan 10^{\circ}(3\cos^2 10^{\circ}-\sin^2 10^{\circ})}{\cos^2 10^{\circ}-3\sin^2 10^{\circ}}\\&=\dfrac{-\tan 10^{\circ}(3-\tan^2 10^{\circ})}{1-3\tan^2 10^{\circ}}\\&=-\tan (3\times 10)^{\circ}\\&=\tan 150^{\circ}\end{align*}$

This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.

But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
How do we know that AC is perpendicular to BD
 
Re: Find \$\angle ADC\$

kaliprasad said:
How do we know that AC is perpendicular to BD

Hi kaliprasad!

Notice that $\angle A=50^{\circ}$ and $\angle B=40^{\circ}$, if we extend the lines $AC$ and $BD$, to form a triangle, we see that we will get a right-angled triangle.
 
Re: Find \$\angle ADC\$

anemone said:
My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.

\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}

We then have

$C=\left(k, -k\tan 10^{\circ}\right)\\D=\left(\dfrac{k}{2\sin 110^{\circ}\cos 40^{\circ}}, 0\right)=\left(\dfrac{k}{\sin 150^{\circ}+\sin 70^{\circ}}, 0\right)=\left(\dfrac{k}{\frac{1}{2}+\cos 20^{\circ}}, 0\right)$

$\begin{align*}\text{Gradient of } l_{CD}&=\dfrac{-k\tan 10^{\circ}}{k\left(1-\dfrac{1}{\frac{1}{2}+\cos 20^{\circ}}\right)}\\&=\dfrac{-\tan 10^{\circ}\left(\frac{1}{2}+\cos 20^{\circ}\right)}{\cos 20^{\circ}-\dfrac{1}{2}}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-1)}{4\cos^2 10^{\circ}-3}\\&=\dfrac{-\tan 10^{\circ}(4\cos^2 10^{\circ}-(\sin^2 10^{\circ} +\cos^2 10^{\circ}))}{4\cos^2 10^{\circ}-3(\sin^2 10^{\circ} +\cos^2 10^{\circ})}\\&=\dfrac{-\tan 10^{\circ}(3\cos^2 10^{\circ}-\sin^2 10^{\circ})}{\cos^2 10^{\circ}-3\sin^2 10^{\circ}}\\&=\dfrac{-\tan 10^{\circ}(3-\tan^2 10^{\circ})}{1-3\tan^2 10^{\circ}}\\&=-\tan (3\times 10)^{\circ}\\&=\tan 150^{\circ}\end{align*}$

This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.

But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
[sp]Very nice solution, anemone! My only criticism is that the quadrilateral $ABCD$ is supposed to be convex. If the vertices $A,B,C,D$ are to be taken in that order then your quadrilateral is not convex. I think that the diagram should look more like this:
[TIKZ] [scale=0.75]
\coordinate[label=left:A] (A) at (-10,0);
\coordinate[label=right:B] (B) at (0,12);
\coordinate[label=right:C] (C) at (2,0);
\coordinate[label=below right: D] (D) at (0,-3.5);
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (C);
\draw (B) -- (D);
\node at (0.7,10.5) {$\leftarrow 10^{\circ}$};
\node at (-8,-0.3) {$20^{\circ}$};
\node at (-0.5,10.5) {$40^{\circ}$};
\node at (-8.5,0.5) {$50^{\circ}$};
\draw (0,0) rectangle +(-0.5, 0.5);
[/TIKZ]
Your trigonometric argument then works almost exactly as before, but the final result is that $\angle ADC$ is then $70^{\circ} + 30^{\circ}$ instead of $70^{\circ}-30^{\circ}$. So I think that the answer should be $100^\circ$.[/sp]
 
Re: Find \$\angle ADC\$

I initially struggled as I didn't know for sure if the vertices $A,B,C,D$ are to be taken in that order or not...after I saw there was no reply to this challenge, I decided to go with my hunch that it is okay they are not ordered in alphabetical manner. Now, the more I read it, the more I think you are right, so, thanks so much to Opalg for pointing it out...

Here is the amended solution (with much more neater trigonometric argument(Sun)):
[TIKZ] [scale=0.75]
\coordinate[label=left:A] (A) at (-10,0);
\coordinate[label=right:B] (B) at (0,12);
\coordinate[label=right:C] (C) at (2,0);
\coordinate[label=below right: D] (D) at (0,-3.5);
\coordinate[label=below right:P] (P) at (0,0);
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (C);
\draw (B) -- (D);
\node at (0.7,10.5) {$\leftarrow 10^{\circ}$};
\node at (-8,-0.3) {$20^{\circ}$};
\node at (-0.5,10.5) {$40^{\circ}$};
\node at (-8.5,0.5) {$50^{\circ}$};
\draw (0,0) rectangle +(-0.5, 0.5);
[/TIKZ]Let $A$ be the origin point in the Cartesian plan, $AC$ and $BD$ meet at $P$ and $AP=k$.

We then have

$D=\left(k, -k\tan 20^{\circ}\right)\\C=\left(k\left(1+\dfrac{\tan 10^{\circ}(1-\tan^2 20^{\circ})}{2\tan 20^{\circ}}\right), 0\right)=\left(k\left(\dfrac{2\tan 20^{\circ}+\tan 10^{\circ}(1-\tan^2 20^{\circ})}{2\tan 20^{\circ}}\right), 0\right)$

$\begin{align*}\text{Gradient of } l_{CD}&=\dfrac{-k\tan 20^{\circ}}{k\left(1-\dfrac{2\tan 20^{\circ}+\tan 10^{\circ}(1-\tan^2 20^{\circ})}{2\tan 20^{\circ}}\right)}\\&=\dfrac{-\tan 20^{\circ}\left(2\tan 20^{\circ}\right)}{-\tan 10^{\circ}(1-\tan^2 20^{\circ})}\\&=\tan20^{\circ}\tan40^{\circ} \tan80^{\circ}\\&=\tan (3\times 20)^{\circ}\\&=\tan60^{\circ}\end{align*}$

This means $\angle PCD=60^{\circ}$ and therefore $\angle PDC=30^{\circ}$.

This implies $\angle ADC=70^{\circ}+30^{\circ}=100^{\circ}$.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K