In the convex quadrilateral $ABCD$, the angles are defined as follows: $\angle CBD = 10^{\circ}$, $\angle CAD = 20^{\circ}$, $\angle ABD = 40^{\circ}$, and $\angle BAC = 50^{\circ}$. The correct calculation for $\angle ADC$ is determined to be $100^{\circ}$ after adjusting for the convexity of the quadrilateral. The initial assumption of the angle calculation was incorrect due to the misinterpretation of the quadrilateral's shape.
PREREQUISITES
Understanding of basic geometric principles and properties of convex quadrilaterals.
Familiarity with angle relationships in polygons.
Knowledge of trigonometric functions and their applications in geometry.
Ability to interpret geometric diagrams accurately.
NEXT STEPS
Study the properties of convex quadrilaterals in detail.
Learn about angle chasing techniques in geometry.
Explore trigonometric identities and their applications in solving geometric problems.
Practice solving problems involving angles in polygons using geometric diagrams.
USEFUL FOR
Mathematicians, geometry enthusiasts, and students preparing for competitive exams who are interested in solving problems related to angles in convex quadrilaterals.
#1
anemone
Gold Member
MHB
POTW Director
3,851
115
In a convex quadrilateral $ABCD$ we are given that $\angle CBD=10^{\circ},\,\angle CAD=20^{\circ},\,\angle ABD=40^{\circ},\, \angle BAC=50^{\circ}$.
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.
\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}
This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.
But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
#3
kaliprasad
Gold Member
MHB
1,333
0
Re: Find \$\angle ADC\$
anemone said:
My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.
\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}
This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.
But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
How do we know that AC is perpendicular to BD
#4
anemone
Gold Member
MHB
POTW Director
3,851
115
Re: Find \$\angle ADC\$
kaliprasad said:
How do we know that AC is perpendicular to BD
Hi kaliprasad!
Notice that $\angle A=50^{\circ}$ and $\angle B=40^{\circ}$, if we extend the lines $AC$ and $BD$, to form a triangle, we see that we will get a right-angled triangle.
#5
Opalg
Gold Member
MHB
2,778
13
Re: Find \$\angle ADC\$
anemone said:
My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.
\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}
This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.
But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
[sp]Very nice solution, anemone! My only criticism is that the quadrilateral $ABCD$ is supposed to be convex. If the vertices $A,B,C,D$ are to be taken in that order then your quadrilateral is not convex. I think that the diagram should look more like this:
[TIKZ] [scale=0.75]
\coordinate[label=left:A] (A) at (-10,0);
\coordinate[label=right:B] (B) at (0,12);
\coordinate[label=right:C] (C) at (2,0);
\coordinate[label=below right: D] (D) at (0,-3.5);
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (C);
\draw (B) -- (D);
\node at (0.7,10.5) {$\leftarrow 10^{\circ}$};
\node at (-8,-0.3) {$20^{\circ}$};
\node at (-0.5,10.5) {$40^{\circ}$};
\node at (-8.5,0.5) {$50^{\circ}$};
\draw (0,0) rectangle +(-0.5, 0.5);
[/TIKZ]
Your trigonometric argument then works almost exactly as before, but the final result is that $\angle ADC$ is then $70^{\circ} + 30^{\circ}$ instead of $70^{\circ}-30^{\circ}$. So I think that the answer should be $100^\circ$.[/sp]
#6
anemone
Gold Member
MHB
POTW Director
3,851
115
Re: Find \$\angle ADC\$
I initially struggled as I didn't know for sure if the vertices $A,B,C,D$ are to be taken in that order or not...after I saw there was no reply to this challenge, I decided to go with my hunch that it is okay they are not ordered in alphabetical manner. Now, the more I read it, the more I think you are right, so, thanks so much to Opalg for pointing it out...
Here is the amended solution (with much more neater trigonometric argument(Sun)):
[TIKZ] [scale=0.75]
\coordinate[label=left:A] (A) at (-10,0);
\coordinate[label=right:B] (B) at (0,12);
\coordinate[label=right:C] (C) at (2,0);
\coordinate[label=below right: D] (D) at (0,-3.5);
\coordinate[label=below right:P] (P) at (0,0);
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (C);
\draw (B) -- (D);
\node at (0.7,10.5) {$\leftarrow 10^{\circ}$};
\node at (-8,-0.3) {$20^{\circ}$};
\node at (-0.5,10.5) {$40^{\circ}$};
\node at (-8.5,0.5) {$50^{\circ}$};
\draw (0,0) rectangle +(-0.5, 0.5);
[/TIKZ]Let $A$ be the origin point in the Cartesian plan, $AC$ and $BD$ meet at $P$ and $AP=k$.