Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.
\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}
This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.
But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
#3
kaliprasad
Gold Member
MHB
1,333
0
Re: Find \$\angle ADC\$
anemone said:
My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.
\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}
This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.
But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
How do we know that AC is perpendicular to BD
#4
anemone
Gold Member
MHB
POTW Director
3,851
115
Re: Find \$\angle ADC\$
kaliprasad said:
How do we know that AC is perpendicular to BD
Hi kaliprasad!
Notice that $\angle A=50^{\circ}$ and $\angle B=40^{\circ}$, if we extend the lines $AC$ and $BD$, to form a triangle, we see that we will get a right-angled triangle.
#5
Opalg
Gold Member
MHB
2,778
13
Re: Find \$\angle ADC\$
anemone said:
My solution (I just solved it):
Let $B$ and $D$ be points on the $x$-axis and extend both the straight lines $BD$ and $AC$ such that they meet at $P$, where $\angle APB=90^{\circ}$ and $BP=k$.
\begin{tikzpicture}[auto]
\draw[thick, ->] (-1,0) -- (10,0) node[anchor = north west] {x};
\draw[thick, ->] (0,-9) -- (0,1) node[anchor = south east] {y};
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:P] (P) at (8,0);
\coordinate[label=left: D] (D) at (5,0);
\coordinate[label=right:C] (C) at (8,-3);
\coordinate[label=right:A] (A) at (8,-8);
\draw (B) to (P);
\draw (B) to (A);
\draw (D) to (A);
\draw (B) to (C);
\draw (A) to (P);
\draw (C) to (D);
\draw [dashed] (D) -- (3.6, 1.4);
\node (1) at (1.5,-0.2) {$10^{\circ}$};
\node (2) at (1.5,-0.9) {$30^{\circ}$};
\node (3) at (7,-6.3) {$30^{\circ}$};
\node (4) at (7.7,-6) {$20^{\circ}$};
\draw (P) rectangle +(-0.5, -0.5);
\end{tikzpicture}
This gives $\angle CDP=180^{\circ}-150^{\circ}=30^{\circ}$.
But $\angle ACP=30^{\circ}+40^{\circ}=70^{\circ}$, we get $\angle ADC=70^{\circ}-30^{\circ}=40^{\circ}$.
[sp]Very nice solution, anemone! My only criticism is that the quadrilateral $ABCD$ is supposed to be convex. If the vertices $A,B,C,D$ are to be taken in that order then your quadrilateral is not convex. I think that the diagram should look more like this:
[TIKZ] [scale=0.75]
\coordinate[label=left:A] (A) at (-10,0);
\coordinate[label=right:B] (B) at (0,12);
\coordinate[label=right:C] (C) at (2,0);
\coordinate[label=below right: D] (D) at (0,-3.5);
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (C);
\draw (B) -- (D);
\node at (0.7,10.5) {$\leftarrow 10^{\circ}$};
\node at (-8,-0.3) {$20^{\circ}$};
\node at (-0.5,10.5) {$40^{\circ}$};
\node at (-8.5,0.5) {$50^{\circ}$};
\draw (0,0) rectangle +(-0.5, 0.5);
[/TIKZ]
Your trigonometric argument then works almost exactly as before, but the final result is that $\angle ADC$ is then $70^{\circ} + 30^{\circ}$ instead of $70^{\circ}-30^{\circ}$. So I think that the answer should be $100^\circ$.[/sp]
#6
anemone
Gold Member
MHB
POTW Director
3,851
115
Re: Find \$\angle ADC\$
I initially struggled as I didn't know for sure if the vertices $A,B,C,D$ are to be taken in that order or not...after I saw there was no reply to this challenge, I decided to go with my hunch that it is okay they are not ordered in alphabetical manner. Now, the more I read it, the more I think you are right, so, thanks so much to Opalg for pointing it out...
Here is the amended solution (with much more neater trigonometric argument(Sun)):
[TIKZ] [scale=0.75]
\coordinate[label=left:A] (A) at (-10,0);
\coordinate[label=right:B] (B) at (0,12);
\coordinate[label=right:C] (C) at (2,0);
\coordinate[label=below right: D] (D) at (0,-3.5);
\coordinate[label=below right:P] (P) at (0,0);
\draw (A) -- (B) -- (C) -- (D) -- (A) -- (C);
\draw (B) -- (D);
\node at (0.7,10.5) {$\leftarrow 10^{\circ}$};
\node at (-8,-0.3) {$20^{\circ}$};
\node at (-0.5,10.5) {$40^{\circ}$};
\node at (-8.5,0.5) {$50^{\circ}$};
\draw (0,0) rectangle +(-0.5, 0.5);
[/TIKZ]Let $A$ be the origin point in the Cartesian plan, $AC$ and $BD$ meet at $P$ and $AP=k$.
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles.
In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra
Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/
by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation
$$
a^n+b^n=c^n
$$
has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy
"Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I posted this in the Lame Math thread, but it's got me thinking.
Is there any validity to this? Or is it really just a mathematical trick?
Naively, I see that i2 + plus 12 does equal zero2.
But does this have a meaning?
I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero?
Ibix offered a rendering of the diagram using what I assume is matrix* notation...