Calculating derivatives for various functions

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Derivatives
Click For Summary
SUMMARY

This discussion focuses on calculating the derivatives of five specific mathematical functions, including \( f(x) = x^n \cdot a^x \) and \( f(x) = \log \left [\sqrt{1+\cos^2(x)}\right ] \). The derivatives were derived using standard differentiation rules, with particular attention given to the behavior of the function \( f(x) = x^p \) for various values of \( p \). The participants confirmed that the derivative formula \( f'(x) = px^{p-1} \) holds for both natural and real numbers, provided \( x > 0 \).

PREREQUISITES
  • Understanding of basic calculus concepts, including differentiation.
  • Familiarity with exponential and logarithmic functions.
  • Knowledge of trigonometric identities and their derivatives.
  • Ability to manipulate algebraic expressions involving powers and roots.
NEXT STEPS
  • Study the application of the product rule in differentiation.
  • Explore the chain rule for differentiating composite functions.
  • Learn about the implications of differentiating functions at critical points.
  • Investigate the behavior of functions as they approach limits, particularly at \( x = 0 \).
USEFUL FOR

Students, educators, and professionals in mathematics, particularly those focusing on calculus and its applications in various fields such as engineering and physics.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

I want to calculate the derivatives of the below functions.

1. $\displaystyle{f(x)=x^n\cdot a^x}$, $\in \mathbb{N}_0, x\in \mathbb{R},a>0$
2. $\displaystyle{f(x)=\log \left [\sqrt{1+\cos^2(x)}\right ]}$,$x\in \mathbb{R}$
3. $\displaystyle{f(x)=\sqrt{e^{\sin \sqrt{x}}}}$, $x>0$
4. $\displaystyle{f(x)=x^p}$, $x>0, p\in \mathbb{R}$
5. $\displaystyle{f(x)=\left (1-\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \sqrt{1+\tan^2(x)}\cdot \left (1+\sqrt{2}\sin \left (\frac{x}{2}\right )\right )}$, $x\in \left (-\frac{\pi}{2},\frac{\pi}{2}\right )$I have done the following:

Function 1:
The derivative is \begin{equation*}f'(x)=\left (x^n\cdot a^x\right )'=\left (x^n\right )'\cdot a^x+x^n\cdot\left ( a^x\right )'=nx^{n-1}\cdot a^x+x^n\cdot a^x\log a\end{equation*}Function 2:
The derivative is \begin{align*}f'(x)&=\left (\log \left [\sqrt{1+\cos^2(x)}\right ]\right )'=\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \left (\sqrt{1+\cos^2(x)}\right )' \\ & =\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \frac{1}{2\sqrt{1+\cos^2(x)}}\cdot \left (1+\cos^2(x)\right )' =\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \frac{1}{2\sqrt{1+\cos^2(x)}}\cdot 2\cos(x)\cdot \left (\cos (x)\right )' \\ &=\frac{1}{\sqrt{1+\cos^2(x)}}\cdot \frac{1}{2\sqrt{1+\cos^2(x)}}\cdot 2\cos(x)\cdot \left (-\sin (x)\right )=-\frac{\cos (x)\cdot \sin (x)}{1+\cos^2(x)}\end{align*}Function 3:
The derivative is \begin{align*}f'(x)&=\left (\sqrt{e^{\sin \sqrt{x}}}\right )'=\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot \left (e^{\sin \sqrt{x}}\right )'=\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot e^{\sin \sqrt{x}}\cdot \left (\sin \sqrt{x}\right )'=\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot e^{\sin \sqrt{x}}\cdot \cos \sqrt{x} \cdot \left ( \sqrt{x}\right )' \\ & =\frac{1}{2\sqrt{e^{\sin \sqrt{x}}}}\cdot e^{\sin \sqrt{x}}\cdot \cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}=\frac{e^{\sin \sqrt{x}}\cdot \cos \sqrt{x}}{4\sqrt{x}\cdot \sqrt{e^{\sin \sqrt{x}}}}=\frac{\left (\sqrt{e^{\sin \sqrt{x}}}\right )^2\cdot \cos \sqrt{x}}{4\sqrt{x}\cdot \sqrt{e^{\sin \sqrt{x}}}}=\frac{\sqrt{e^{\sin \sqrt{x}}}\cdot \cos \sqrt{x}}{4\sqrt{x}} \end{align*}Function 4:
The derivative is \begin{equation*}f'(x)=\left (x^p\right )'=px^{p-1}\end{equation*}Function 5:
The function is equal to \begin{align*}f(x)&=\left (1-\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \sqrt{1+\tan^2(x)}\cdot \left (1+\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\\ & =\left (1-\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \left (1+\sqrt{2}\sin \left (\frac{x}{2}\right )\right )\cdot \sqrt{1+\tan^2(x)}\\ & =\left (1^2-\left (\sqrt{2}\sin \left (\frac{x}{2}\right )\right )^2\right )\cdot \sqrt{1+\tan^2(x)}\\ & =\cos (x)\cdot \sqrt{1+\tan^2(x)}\\ & =\cos (x)\cdot \sqrt{1+\frac{\sin^2}{\cos^2}}\\ & =\cos (x)\cdot \sqrt{\frac{\cos^2(x)+\sin^2}{\cos^2}}\\ & =\cos (x)\cdot \sqrt{\frac{1}{\cos^2(x)}}\\ & =\cos (x)\cdot \frac{1}{\cos(x)}\\ & =1\end{align*}
So the derivative is \begin{equation*}f'(x)=\left (1\right )'=0 \end{equation*}
At function 4 it doesn't matter if $p$ is a natural number or a real number, it always like that the derivative, isn't it? For example if $p=\frac{1}{2}$ that formula holds.

:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
At function 4 it doesn't matter if $p$ is a natural number or a real number, it always like that the derivative, isn't it? For example if $p=\frac{1}{2}$ that formula holds.
Hey mathmari!

What if $p=0$ or $p=1$? 🤔

The other derivatives look correct to me. (Nod)
 
Klaas van Aarsen said:
What if $p=0$ or $p=1$? 🤔

If $p=0$ then $f(x)=x^0=1$ and $f'(x)=0$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=0\cdot x^{0-1}=0$.
If $p=1$ then $f(x)=x^1=x$ and $f'(x)=1$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=1\cdot x^{1-1}=x^0=1$.

:unsure:
 
mathmari said:
If $p=0$ then $f(x)=x^0=1$ and $f'(x)=0$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=0\cdot x^{0-1}=0$.
If $p=1$ then $f(x)=x^1=x$ and $f'(x)=1$. Using the formula $f'(x)=px^{p-1}$ we have $f'(x)=1\cdot x^{1-1}=x^0=1$.
These are 'special' at $x=0$. Note that $0\cdot x^{0-1}$ is not defined for $x=0$, but we do have that $(1)'=0$.
Additionally we run into $0^0$, which could be $0$, $1$, undefined, or something else.
So I think we should specify the behavior at $0$. 🤔

EDIT: Oh wait. (Wait)
I see now that it is given that $x>0$, in which case these edge cases do not apply.
 
Last edited:
Klaas van Aarsen said:
These are 'special' at $x=0$. Note that $0\cdot x^{0-1}$ is not defined for $x=0$, but we do have that $f'(0)=0$.
Additionally we run into $0^0$, which could be $0$, $1$, undefined, or something else.
So I think we should specify the behavior at $0$. 🤔

EDIT: Oh wait. (Wait)
I see now that it is given that $x>0$, in which case these edge cases do not apply.

So for $x>0$ the formula I wrote holds, or not? :unsure:
 
mathmari said:
So for $x>0$ the formula I wrote holds, or not?
Yep. (Nod)
 
Klaas van Aarsen said:
Yep. (Nod)

Great! Thank you! (Star)
 

Similar threads

Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
21
Views
2K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K