Calculate directly the curve integrals

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Curve Integrals
Click For Summary

Discussion Overview

The discussion revolves around the calculation of curve integrals over a specific region in the plane, denoted as space $D$, which is formed by removing two open discs from a square. Participants explore whether to apply Green's Theorem or calculate the integrals directly, while also discussing the parametrization of the boundary curves.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • Some participants propose using Green's Theorem to evaluate the integrals, while others express concerns about the continuity of derivatives at certain points, particularly at (0,0).
  • There is a suggestion to use a keyhole contour to circumvent the issue of discontinuity at (0,0).
  • Participants discuss the need for proper orientation of the parametrizations, with some arguing for clockwise orientation and others for counter-clockwise.
  • Different parametrizations for the boundary curves are proposed, including those for the rectangle and the circles, with discussions on their correctness and orientation.
  • Calculations for the integrals over the boundary curves are presented, with some participants questioning the correctness of the results and whether signs were lost in the process.
  • There is a mention that the integral results may vary based on whether the contour includes the origin, affecting the application of Green's Theorem.

Areas of Agreement / Disagreement

Participants do not reach a consensus on whether to apply Green's Theorem directly or to use a keyhole contour. There are competing views on the orientation of the parametrizations and the correctness of the integral calculations.

Contextual Notes

Discussions highlight the limitations of applying Green's Theorem due to the discontinuity at (0,0) and the necessity of ensuring that the area considered is enclosed by a simple closed curve. The orientation of the curves and the correctness of the parametrizations remain points of contention.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We consider the space $D$ that we get if we remove from the square $[-2,7]\times [-3,6]$ the open discs with center the point $(0,0)$ and radius $1$ and with center $(3,3)$ and radius $2$.

I want to calculate $$\sum_{j=1}^3\oint_{\sigma_j}\left (-\frac{y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy\right )$$ where $\sigma_1, \sigma_2, \sigma_3$ are the boundary curves of $D$ with the positive orientation in relation to $D$.
Can we calculate directly the curve integrals or do we have to apply Green's Theorem? (Wondering)

If we apply Green's Theorem we get the following: $$\sum_{j=1}^3\oint_{\sigma_j}\left (-\frac{y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy\right )=\iint_D\left (\frac{\partial{\left (\frac{x}{x^2+y^2}\right )}}{\partial{x}}-\frac{\partial{\left (-\frac{y}{x^2+y^2}\right )}}{\partial{y}}\right )dxdy=\iint_D\left (\frac{-x^2+y^2}{(x^2+y^2)^2}+\frac{x^2-y^2}{(x^2+y^2)^2}\right )dxdy=\iint_D\left (\frac{0}{(x^2+y^2)^2}\right )dxdy=0$$ right?


To calculate the curve integral we have to find a parametrization of $D$, right? The space $D$ is:

View attachment 7602

So, $\sigma_1$ is the parametrization of the rectangle, $\sigma_2$ the parametrization of the small circle and $\sigma_3$ of the big circle, right?
We have that $\sigma_2=(\cos t,\sin t), t\in [0, 2\pi]$ and $\sigma_3=(2\cos t,2\sin t), t\in [0, 2\pi]$. Is everything correct?

How could we parametrize the rectangle? Do we consider for that the parametraization $\sigma_1$ as the union of the following? $$\rho_1=(t, -3), -2\leq t\leq 7 \\ \rho_2=(7, t), -3\leq t\leq 6 \\ \rho_3=(7-t, 6), 0\leq t\leq 9 \\ \rho_4=(-2, 6-t), 0\leq t\leq 9$$

(Wondering)
 

Attachments

  • spaceD.JPG
    spaceD.JPG
    48.3 KB · Views: 119
Last edited by a moderator:
Physics news on Phys.org
Hey mathmari! (Smile)

We can't directly apply Green's theoreom on the rectangle because we do not have a continuous derivative in (0,0). (Worried)
However, we can apply it to a so called keyhole contour.

The circle parametrizations should have their center added shouln't they?
And for the proper orientation shouldn't they be clockwise?

And yes, we can parametrize the rectangle by joining those 4 line segments. (Nod)
But shouldn't they be oriented counter clockwise?
 
I like Serena said:
We can't directly apply Green's theoreom on the rectangle because we do not have a continuous derivative in (0,0). (Worried)
However, we can apply it to a so called keyhole contour.

Does that means that we apply Green's Theorem on $D$ when we remove the poinr $(0,0)$ ? (Wondering)
I like Serena said:
The circle parametrizations should have their center added shouln't they?
And for the proper orientation shouldn't they be clockwise?

What do you mean? (Wondering)
I like Serena said:
And yes, we can parametrize the rectangle by joining those 4 line segments. (Nod)
But shouldn't they be oriented counter clockwise?

Isn't the orientation at the parametrization I wrote counter clockwise? We start from the point $(-2,-3)$, then we go to the point $(7,-3)$, then we go to the point $(7,6)$, then to the point $(-3,6)$ and then again to the point $(-2,-3)$. (Wondering)
 
mathmari said:
Does that means that we apply Green's Theorem on $D$ when we remove the poinr $(0,0)$ ?

We can't remove only 1 point.
The area must be the area enclosed by a simple closed curve. (Nerd)

However, we can connect the rectangle contour to the region around (0,0) and treat them as a one curve (a keyhole contour).
See for example:
View attachment 7605
The connection is supposed to be zero width.
Note that the inner contour has to be clockwise instead of counter-clockwise for this to work. (Thinking)

mathmari said:
What do you mean?

$\sigma_2$ and $\sigma_3$ are currently counter clockwise instead of clockwise aren't they?
And $\sigma_3$ currently has its center at (0,0) instead of (3,3) doesn't it?

mathmari said:
Isn't the orientation at the parametrization I wrote counter clockwise? We start from the point $(-2,-3)$, then we go to the point $(7,-3)$, then we go to the point $(7,6)$, then to the point $(-3,6)$ and then again to the point $(-2,-3)$. (Wondering)

Oh yes. :o
 

Attachments

  • 180px-Keyhole_contour.svg.png
    180px-Keyhole_contour.svg.png
    1.6 KB · Views: 124
I like Serena said:
$\sigma_2$ and $\sigma_3$ are currently counter clockwise instead of clockwise aren't they?
And $\sigma_3$ currently has its center at (0,0) instead of (3,3) doesn't it?

So that the orientation is clockwise do we have to define $\sigma_2 = (\cos t, -\sin t), t\in [0,2\pi]$ ?
Is the parametrization of circle with center $(3,3)$ this one: $\sigma_3=(2\cos t+3,-2\sin t+3), t\in [0, 2\pi]$ ?

(Wondering)
 
mathmari said:
So that the orientation is clockwise do we have to define $\sigma_2 = (\cos t, -\sin t), t\in [0,2\pi]$ ?
Is the parametrization of circle with center $(3,3)$ this one: $\sigma_3=(2\cos t+3,-2\sin t+3), t\in [0, 2\pi]$ ?

That will do it yes. (Nod)
 
I like Serena said:
That will do it yes. (Nod)

For the curve integral over $\sigma_1$ I have found the following:
$$\oint_{\sigma_1}=\oint_{\rho_1}+\oint_{\rho_2}+\oint_{\rho_3}+\oint_{\rho_4}=\ldots =\int_{-2}^7-\frac{3}{t^2+9}dt+\int_{-3}^6\frac{7}{49+t^2}dt+\int_0^9\frac{6}{(7-t)^2+36}dt+\int_0^9\frac{2}{4+(6-t)^2}dt$$

The curve integral over $\sigma_2$ is equal to $$\oint_{\sigma_2}\left (-\frac{y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy\right )=\int_0^{2\pi}\left (-(-\sin t)\cdot (-\sin t)+\cos t (-\cos t)\right )dt=\int_0^{2\pi}dt=2\pi$$

The curve integral over $\sigma_3$ is equal to $$\oint_{\sigma_3}\left (-\frac{y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy\right )=\int_0^{2\pi}\left (-\frac{-2\sin t+3}{-12\sin t+12\cos t+22}\cdot (-2\sin t)+\frac{2\cos t+3}{-12\sin t+12\cos t+22}\cdot (-2\cos t)\right )dt=\int_0^{2\pi}\left (\frac{-4\sin^2 t+6\sin t-4\cos^2 t-6\cos t}{-12\sin t+12\cos t+22}\right )dt=\int_0^{2\pi}\left (\frac{-4+6\sin t-6\cos t}{-12\sin t+12\cos t+22}\right )dt=0$$

Can that be correct? (Wondering)
 
mathmari said:
For the curve integral over $\sigma_1$ I have found the following:
$$\oint_{\sigma_1}=\oint_{\rho_1}+\oint_{\rho_2}+\oint_{\rho_3}+\oint_{\rho_4}=\ldots =\int_{-2}^7-\frac{3}{t^2+9}dt+\int_{-3}^6\frac{7}{49+t^2}dt+\int_0^9\frac{6}{(7-t)^2+36}dt+\int_0^9\frac{2}{4+(6-t)^2}dt$$

The curve integral over $\sigma_2$ is equal to $$\oint_{\sigma_2}\left (-\frac{y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy\right )=\int_0^{2\pi}\left (-(-\sin t)\cdot (-\sin t)+\cos t (-\cos t)\right )dt=\int_0^{2\pi}dt=2\pi$$

The curve integral over $\sigma_3$ is equal to $$\oint_{\sigma_3}\left (-\frac{y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy\right )=\int_0^{2\pi}\left (-\frac{-2\sin t+3}{-12\sin t+12\cos t+22}\cdot (-2\sin t)+\frac{2\cos t+3}{-12\sin t+12\cos t+22}\cdot (-2\cos t)\right )dt=\int_0^{2\pi}\left (\frac{-4\sin^2 t+6\sin t-4\cos^2 t-6\cos t}{-12\sin t+12\cos t+22}\right )dt=\int_0^{2\pi}\left (\frac{-4+6\sin t-6\cos t}{-12\sin t+12\cos t+22}\right )dt=0$$

Can that be correct? (Wondering)

Didn't we lose a minus sign for $\sigma_2$? (Wondering)

And yes, this is as expected.
With Green's theorem you've already found that any contour would result in 0, with only an exception when the contour contains the origin, since the function is not defined there.
It means that we need to handle the origin separately and calculate it by contour integral.
All other contours or combinations of contours (such as the keyhole contour that I mentioned) will result in 0.
And the contour you have for $\sigma_1$ should result in $2\pi$ since it includes the origin (the opposite of $\sigma_2$). (Thinking)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K