MHB Calculate Integral $\int_{0}^{1}x^{2014}\cdot \left(1-x\right)^{2014}dx$

Click For Summary
The integral $\int_{0}^{1} x^{2014} (1-x)^{2014} dx$ can be calculated using integration by parts, leading to the result $\frac{(2014!)^2}{4029!}$. The process involves recursive integration, simplifying the integral step by step. The final expression is derived from the factorial representation, confirming the relationship between the integral and the factorials. This method highlights the efficiency of integration techniques in solving complex integrals. The discussion emphasizes the correctness of the solution provided by multiple contributors.
juantheron
Messages
243
Reaction score
1
Calculation of Integral $\displaystyle \int_{0}^{1}x^{2014}\cdot \left(1-x\right)^{2014}dx$
 
Mathematics news on Phys.org
If we use the beta function:
\[
B(a+1,b+1) = \int_0^1 x^a (1-x)^b dx,
\]
and the property of
\[
B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}
\]
and the fact that for integer $n$, $\Gamma(n) = (n-1)!$, we have:
\[
B(a,b) = \frac{(a-1)!(b-1)!}{(a+b-1)!}.
\]

For this problem $a = b = 2013$, so $B(2013,2013) = \frac{(2014!)^2}{4029!}$.
 
Last edited:
jacks said:
Calculation of Integral $\displaystyle \int_{0}^{1}x^{2014}\cdot \left(1-x\right)^{2014}dx$

[sp]Is...

$\displaystyle \int_{0}^{1} x^{2014}\ (1-x)^{2014}\ dx = \frac{1}{2015}\ (|x^{2015}\ (1-x)^{2014}|_{0}^{1} + 2014\ \int_{0}^{1} x^{2015}\ (1-x)^{2013}\ d x ) = \frac{2014}{2015} \int_{0}^{1} x^{2015}\ (1-x)^{2013}\ dx\ (1) $

Proceeding in this way we obtain...

$\displaystyle \int_{0}^{1} x^{2014}\ (1-x)^{2014}\ dx = \frac{2014 \cdot 2013 ... 2 \cdot 1}{2015 \cdot 2016 ... 4028 \cdot 4029} = \frac{(2014!)^{2}}{4029!}\ (2)$

[/sp]

Kind regards

$\chi$ $\sigma$
 
Last edited:
Thanks http://mathhelpboards.com/members/magneto/ and chisigma Nice solution.

My Solution is same as Chisigma(Integration by parts):

Let $\displaystyle I(m,n) = \int_0^1 \! x^m(1-x)^n \, dx$.

We have, for $n \ge 1$,

\[ \begin{eqnarray}
I(m,n) &=& \left. -\frac{x^{m+1}(1-x)^n}{m+1}\right]_0^1 + \int_0^1 \frac{n}{m+1}x^{m+1}(1-x)^{n-1} \, dx \nonumber \\
&=& \frac{n}{m+1}I(m+1,n-1) \nonumber
\end{eqnarray}\]
Repeating this gives us
\[ \begin{eqnarray}
I(m,n) &=& \frac{n}{m+1}\cdot\frac{n-1}{m+2}\cdot\cdots\cdot\frac{1}{m+n}I(m+n,0) \nonumber \\
&=& \frac{n!}{\frac{(m+n)!}{m!}}\cdot\frac{1}{m+n+1} \nonumber \\
&=& \frac{1}{m+n+1}\cdot\frac{1}{\binom{m+n}{m}} \nonumber
\end{eqnarray} \]

Now Put $m=2014$ and $n=2014$

So $\displaystyle I(2014,2014) = \int_{0}^{1}x^{2014}\cdot (1-x)^{2014}dx = \frac{1}{2014+2014+1}\cdot \frac{1}{\binom{2014+2014}{2014}} = \frac{1}{4029}\cdot \frac{1}{\binom{4028}{2014}}$
 
Last edited by a moderator:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
1K