Calculate Integral $\int_{0}^{1}x^{2014}\cdot \left(1-x\right)^{2014}dx$

Click For Summary
SUMMARY

The integral $\int_{0}^{1}x^{2014}\cdot (1-x)^{2014}dx$ is calculated using integration by parts, yielding the result $\frac{(2014!)^{2}}{4029!}$. The calculation involves a recursive relationship that simplifies the integral into a product of factorials, specifically $\frac{2014}{2015} \int_{0}^{1} x^{2015} (1-x)^{2013} dx$. This method effectively demonstrates the application of integration techniques to evaluate complex integrals.

PREREQUISITES
  • Understanding of integration techniques, particularly integration by parts
  • Familiarity with factorial notation and properties
  • Knowledge of definite integrals and their evaluation
  • Basic concepts of combinatorial mathematics
NEXT STEPS
  • Study the properties of the Beta function and its relation to integrals of the form $\int_{0}^{1} x^{a} (1-x)^{b} dx$
  • Learn about the Gamma function and its connection to factorials
  • Explore advanced integration techniques, including substitution and partial fractions
  • Investigate the applications of integration by parts in solving complex integrals
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in advanced integration techniques and combinatorial mathematics.

juantheron
Messages
243
Reaction score
1
Calculation of Integral $\displaystyle \int_{0}^{1}x^{2014}\cdot \left(1-x\right)^{2014}dx$
 
Physics news on Phys.org
If we use the beta function:
\[
B(a+1,b+1) = \int_0^1 x^a (1-x)^b dx,
\]
and the property of
\[
B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}
\]
and the fact that for integer $n$, $\Gamma(n) = (n-1)!$, we have:
\[
B(a,b) = \frac{(a-1)!(b-1)!}{(a+b-1)!}.
\]

For this problem $a = b = 2013$, so $B(2013,2013) = \frac{(2014!)^2}{4029!}$.
 
Last edited:
jacks said:
Calculation of Integral $\displaystyle \int_{0}^{1}x^{2014}\cdot \left(1-x\right)^{2014}dx$

[sp]Is...

$\displaystyle \int_{0}^{1} x^{2014}\ (1-x)^{2014}\ dx = \frac{1}{2015}\ (|x^{2015}\ (1-x)^{2014}|_{0}^{1} + 2014\ \int_{0}^{1} x^{2015}\ (1-x)^{2013}\ d x ) = \frac{2014}{2015} \int_{0}^{1} x^{2015}\ (1-x)^{2013}\ dx\ (1) $

Proceeding in this way we obtain...

$\displaystyle \int_{0}^{1} x^{2014}\ (1-x)^{2014}\ dx = \frac{2014 \cdot 2013 ... 2 \cdot 1}{2015 \cdot 2016 ... 4028 \cdot 4029} = \frac{(2014!)^{2}}{4029!}\ (2)$

[/sp]

Kind regards

$\chi$ $\sigma$
 
Last edited:
Thanks http://mathhelpboards.com/members/magneto/ and chisigma Nice solution.

My Solution is same as Chisigma(Integration by parts):

Let $\displaystyle I(m,n) = \int_0^1 \! x^m(1-x)^n \, dx$.

We have, for $n \ge 1$,

\[ \begin{eqnarray}
I(m,n) &=& \left. -\frac{x^{m+1}(1-x)^n}{m+1}\right]_0^1 + \int_0^1 \frac{n}{m+1}x^{m+1}(1-x)^{n-1} \, dx \nonumber \\
&=& \frac{n}{m+1}I(m+1,n-1) \nonumber
\end{eqnarray}\]
Repeating this gives us
\[ \begin{eqnarray}
I(m,n) &=& \frac{n}{m+1}\cdot\frac{n-1}{m+2}\cdot\cdots\cdot\frac{1}{m+n}I(m+n,0) \nonumber \\
&=& \frac{n!}{\frac{(m+n)!}{m!}}\cdot\frac{1}{m+n+1} \nonumber \\
&=& \frac{1}{m+n+1}\cdot\frac{1}{\binom{m+n}{m}} \nonumber
\end{eqnarray} \]

Now Put $m=2014$ and $n=2014$

So $\displaystyle I(2014,2014) = \int_{0}^{1}x^{2014}\cdot (1-x)^{2014}dx = \frac{1}{2014+2014+1}\cdot \frac{1}{\binom{2014+2014}{2014}} = \frac{1}{4029}\cdot \frac{1}{\binom{4028}{2014}}$
 
Last edited by a moderator:

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K