Calculate Mass of Satellite: Step-by-Step Guide

  • Thread starter Thread starter songoku
  • Start date Start date
  • Tags Tags
    Mass Satellite
Click For Summary
SUMMARY

The discussion centers on calculating the mass of a satellite in orbit around Earth, given its orbital velocity of 5.9 km/s and an escape velocity of 14.6 km/s. Participants highlight that the mass of the satellite is irrelevant to the equations governing orbital and escape velocities, specifically referencing the equations for orbital speed and gravitational force. The consensus is that the problem is poorly formulated, as the escape velocity at the given altitude should be approximately 8.3 km/s, not 14.6 km/s, indicating a misunderstanding of the physics involved.

PREREQUISITES
  • Understanding of gravitational force equations, specifically F = G(m1 * m2) / r^2
  • Knowledge of orbital mechanics, including v_orbital = sqrt(GM/r)
  • Familiarity with kinetic and gravitational potential energy equations, such as KE = 1/2 mv^2 and GPE = -G(m1 * m2) / r
  • Basic understanding of escape velocity concepts in astrophysics
NEXT STEPS
  • Research the derivation of escape velocity and its dependence on gravitational parameters
  • Explore the implications of mass ratios in gravitational systems, particularly in orbital mechanics
  • Study the differences between circular and elliptical orbits and their respective energy requirements
  • Investigate the role of mass in gravitational interactions, particularly in multi-body systems
USEFUL FOR

Students in physics, astrophysics enthusiasts, and educators seeking to clarify concepts related to satellite motion and gravitational forces.

songoku
Messages
2,508
Reaction score
393
Homework Statement
A satellite is orbiting earth. The satellite has orbital velocity of 5.9 km/s. If the minimum velocity for the satellite to escape earth is 14.6 km/s, what is the mass of the satellite if the satellite is located 3200 km above earth’s surface?
Relevant Equations
##F=m \frac{v^2}{r}##
##F=G\frac{m_1 . m_2}{r^2}##
##KE=\frac 1 2 mv^2##
##GPE=-G\frac{m_1.m_2}{r}##
I am not really sure what to do to find the mass of satellite.

Equation for orbital speed:
$$m \frac{v^2}{r}=G\frac{m_1 . m_2}{r^2}$$
$$v_{orbital}=\sqrt{\frac{GM}{r}}$$

Equation for escape speed:
$$KE_1+GPE_1=KE_2+GPE_2$$

I tried to take position 1 as the position where the satellite orbits and position 2 is at infinity (where both KE and GPE are zero) but I can't find the mass of the satellite.

How to approach this question? Thanks
 
Physics news on Phys.org
songoku said:
Homework Statement:: A satellite is orbiting earth. The satellite has orbital velocity of 5.9 km/s. If the minimum velocity for the satellite to escape Earth is 14.6 km/s, what is the mass of the satellite if the satellite is located 3200 km above earth’s surface?
Relevant Equations:: ##F=m \frac{v^2}{r}##
##F=G\frac{m_1 . m_2}{r^2}##
##KE=\frac 1 2 mv^2##
##GPE=-G\frac{m_1.m_2}{r}##

I am not really sure what to do to find the mass of satellite.

Equation for orbital speed:
$$m \frac{v^2}{r}=G\frac{m_1 . m_2}{r^2}$$
$$v_{orbital}=\sqrt{\frac{GM}{r}}$$

Equation for escape speed:
$$KE_1+GPE_1=KE_2+GPE_2$$

I tried to take position 1 as the position where the satellite orbits and position 2 is at infinity (where both KE and GPE are zero) but I can't find the mass of the satellite.

How to approach this question? Thanks
A thought experiment: consider another such satellite next to the first. Is there any reason the second would not obey all the same conditions? Now consider them merged into a single satellite of twice the mass. Any reason that would not also satisfy all the same conditions?
 
  • Like
Likes   Reactions: songoku
haruspex said:
A thought experiment: consider another such satellite next to the first. Is there any reason the second would not obey all the same conditions? Now consider them merged into a single satellite of twice the mass. Any reason that would not also satisfy all the same conditions?
No, so does it mean that there is no answer to this question since based on the equations the mass of satellite is irrelevant?

Thanks
 
songoku said:
No, so does it mean that there is no answer to this question since based on the equations the mass of satellite is irrelevant?

Thanks
I'd say so.
 
  • Like
Likes   Reactions: SammyS and songoku
Thank you very much haruspex
 
songoku said:
Homework Statement:: A satellite is orbiting earth. The satellite has orbital velocity of 5.9 km/s. If the minimum velocity for the satellite to escape Earth is 14.6 km/s
It would appear that this is a problem that you made up yourself.

If 5.9 km/s yields a circular orbit then the required escape velocity at that altitude would be only ##\sqrt{2}## times as much: 8.3 km/s. The figure of 14.6 km/s is incorrect.
 
  • Like
Likes   Reactions: songoku
jbriggs444 said:
It would appear that this is a problem that you made up yourself.

If 5.9 km/s yields a circular orbit then the required escape velocity at that altitude would be only ##\sqrt{2}## times as much: 8.3 km/s. The figure of 14.6 km/s is incorrect.
Does that work out for surface escape velocity? Also, thinking out of the box... No value is specified for ##G##
 
valenumr said:
Does that work out for surface escape velocity?
Yes. Low Earth orbital velocity is 7.8 km/s. Low Earth escape velocity is ##\sqrt{2}## times that -- 11 km/s.

An object in a circular orbit always has half the kinetic energy required to escape.
 
jbriggs444 said:
Yes. Low Earth orbital velocity is 7.8 km/s. Low Earth escape velocity is ##\sqrt{2}## times that -- 11 km/s.

An object in a circular orbit always has half the kinetic energy required to escape.
Sorry, I was joking a little. I think Earth escape is around 11 m/s, and solar system (from earth) is around 17 m/s. The question is sketchy unless you want to change gravity or the mass of the earth.
 
  • #10
valenumr said:
Sorry, I was joking a little. I think Earth escape is around 11 m/s, and solar system (from earth) is around 17 m/s. The question is sketchy unless you want to change gravity or the mass of the earth.
@haruspex has identified the primary sketchiness well enough: None of the figures depend on the mass of the satellite.

Changing gravity or the mass of the Earth does nothing to address that concern.
 
  • #11
jbriggs444 said:
@haruspex has identified the primary sketchiness well enough. None of the figures depend on the mass of the satellite. Changing gravity or the mass of the Earth does nothing to address that concern.
Right. Also I meant km/s. The orbital velocity only depends on distance.
 
  • #12
valenumr said:
Right. Also I meant km/s. The orbital velocity only depends on distance.
Well, okay, but wouldn't the orbital energy be higher (and therefore velocity vs distance) if Earth were more massive? Or of gravity were stronger. Sorry, I tend to talk fast and think slow.
 
  • #13
jbriggs444 said:
It would appear that this is a problem that you made up yourself.

If 5.9 km/s yields a circular orbit then the required escape velocity at that altitude would be only ##\sqrt{2}## times as much: 8.3 km/s. The figure of 14.6 km/s is incorrect.
This is not the problem I made by myself. I also realized all the things you wrote, I even googled escape velocity of earth, which is 11.2 km/s. I also reverse calculated mass of Earth from given data and it did not match the actual mass of earth. I am just afraid I missed something, like misinterpreting the question, so I posted it here.

Thank you jbriggs444
 
  • #14
valenumr said:
Well, okay, but wouldn't the orbital energy be higher (and therefore velocity vs distance) if Earth were more massive? Or of gravity were stronger. Sorry, I tend to talk fast and think slow.
Yes. Orbital velocity and energy would be higher. And escape velocity and energy would be higher.

Say that you quadruple the mass of the planet. Or quadruple gravity. But you still arrange for a circular orbit at the prescribed radius. Escape energy has quadrupled, obviously. So escape velocity has doubled. Now we need centrifugal force (##\frac{mv^2}{r}##) to quadruple. So orbital velocity has doubled. And orbital energy has quadrupled.

So the ratio of orbital energy to escape energy has remained constant. As has the ratio of orbital velocity to escape velocity.
 
  • Like
Likes   Reactions: valenumr
  • #15
jbriggs444 said:
Yes. Orbital velocity and energy would be higher. And escape velocity and energy would be higher.

Say that you quadruple the mass of the planet. Or quadruple gravity. Escape energy has quadrupled, obviously. So escape velocity has doubled. Now we need centrifugal force (##\frac{mv^2}{r}##) to quadruple. So orbital velocity has doubled. And orbital energy has quadrupled.

So the ratio of orbital energy to escape energy has remained constant. As has the ratio of orbital velocity to escape velocity.
I was trying to make the numbers given make sense. But obviously it can't work.
 
  • Like
Likes   Reactions: jbriggs444
  • #16
In general, the motion in the gravity field can tell us nothing about the satellite mass. All masses fall with similar motion in the gravify field. I suggest this is a poorly phrased problem
 
  • #17
mpresic3 said:
I suggest this is a poorly phrased problem
Just for fun and pedantry, I think it's only problematic because we are assuming the satellite is of negligible mass compared to Earth.

The math is beyond me but I wonder if there is as solution for that orbital v and escape v if the satellite's mass is a sizable fraction of the Earth. :smile:
 

Similar threads

Replies
5
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K