MHB Calculate $\overline{AB}+\overline{AC}$ of Regular Nonagon ABCDEFGHI

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Regular
Albert1
Messages
1,221
Reaction score
0
$A\,\, regular \,\,nonagon \,\,ABCDEFGHI,\,\,if \,\,\overline{AE}=1$

$find :\overline{AB}+\overline{AC}=?$
 
Last edited:
Mathematics news on Phys.org
My attempt:
View attachment 6451The irregular pentagon $ABCDE$ has a total interior angle sum of $540^{\circ}$. Therefore, $\angle EAB = \angle AED = 60^{\circ}$.

From the figure, we have ($x = \overline{AB}, \: \: \: y=\overline{AC}$):

\[y = \frac{1}{2\cos 40^{\circ}},\: \: \: x = \frac{y}{2\cos 20^{\circ}} = \frac{1}{4\cos 20^{\circ}\cos 40^{\circ}} \\\\ \\\\ x+y = \frac{2\cos 20^{\circ}+1}{4\cos 20^{\circ}\cos 40^{\circ}}=\frac{2\cos 20^{\circ}+1}{2(\cos 20^{\circ}+\cos 60^{\circ})} = 1.\]
 

Attachments

  • Nonagon.PNG
    Nonagon.PNG
    10.9 KB · Views: 119
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K