MHB Calculate Real Values of $x$ in Exponential Equation

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Exponential
Click For Summary
The discussion focuses on solving the exponential equation involving square roots: $\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1} = 2^x+3^x+1$. A substitution is made where $2^x = a$ and $3^x = b$, leading to the equation $\sqrt{a^2-ab+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1} = a+b+1$. The solution reveals that both $a$ and $b$ equal 1, resulting in $x = 0$ as the only real solution. The discussion also highlights the use of inequalities to establish the conditions under which equality holds, confirming that $x = 0$ satisfies the original equation.
juantheron
Messages
243
Reaction score
1
Calculation of real values of $x$ in $\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1} = 2^x+3^x+1$

My Try:: Let $2^x = a$ and $3^x = b$ , Then

$\sqrt{a^2-a\cdot b+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1} = a+b+1$

Now I am struck after that

Help required

Thanks
 
Mathematics news on Phys.org
Hello, jacks!

You are on the right track . . .

Calculate real values of $x$ in

$\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1}$
. . . $=\; 2^x+3^x+1$

My try: .Let $2^x = a$ and $3^x = b$.

Then: $\sqrt{a^2-a\cdot b+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1}$
. . . . $= a+b+1$

Now I am struck after that.
At this point, I have some suspicions . . .

\begin{array}{cccc}\sqrt{a^2-a+1} &amp;=&amp; a &amp; [1] \\<br /> \sqrt{b^2-b+1} &amp;=&amp; b &amp; [2] \\<br /> \sqrt{a^2-ab+b^2} &amp;=&amp; 1 &amp; [3] \end{array}

Square [1]: .a^2-a+1 \:=\:a^2 \quad\Rightarrow\quad a \,=\,1

Square [2]: .b^2-b+1 \:=\:b^2 \quad\Rightarrow\quad b \,=\,1

Then: .a \,=\,1 \quad\Rightarrow\quad 2^x \,=\,1 \quad\Rightarrow\quad \boxed{x \,=\,0}

. . which satisfies all the equations.
 
jacks said:
Calculation of real values of $x$ in $\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1} = 2^x+3^x+1$

My Try:: Let $2^x = a$ and $3^x = b$ , Then

$\sqrt{a^2-a\cdot b+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1} = a+b+1$

Thanks Soroban I have got it.

Now I have use the Inequality $(a-b)^2\geq 0\Rightarrow a^2+b^2\geq 2ab$

Now $3a^2+3b^2\geq 6ab\Rightarrow 4a^2+4b^2-4ab\geq a^2+b^2+2ab$

So $\displaystyle a^2-ab+b^2\geq \frac{a^2+b^2+2ab}{4}\Rightarrow \displaystyle \sqrt{a^2-ab+b^2}\geq \sqrt{\frac{(a+b)^2}{4}} = \frac{a+b}{2}$

So $\displaystyle \sqrt{a^2-ab+b^2}\geq \frac{a+b}{2}$ and equality hold when $a=b$

So $\displaystyle \sqrt{a^2-ab+b^2}+\sqrt{a^2-a+1}+\sqrt{b^2-b+1}\geq a+b+1$

and equality hold when $a = b$. So $2^x = 3^x\Rightarrow x = 0$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K