Calculate Real Values of $x$ in Exponential Equation

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Exponential
Click For Summary
SUMMARY

The discussion focuses on solving the exponential equation $\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1} = 2^x+3^x+1$. Participants utilized substitutions where $2^x = a$ and $3^x = b$, leading to the conclusion that the only real solution is $x = 0$. The solution was verified through algebraic manipulations and the application of the Cauchy-Schwarz inequality, confirming that equality holds when $a = b$.

PREREQUISITES
  • Understanding of exponential functions and their properties
  • Familiarity with algebraic manipulation and square roots
  • Knowledge of the Cauchy-Schwarz inequality
  • Ability to solve equations involving substitutions
NEXT STEPS
  • Study the application of the Cauchy-Schwarz inequality in algebraic proofs
  • Explore advanced techniques for solving exponential equations
  • Learn about the properties of square roots in algebraic expressions
  • Investigate other methods for verifying solutions to exponential equations
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving complex exponential equations will benefit from this discussion.

juantheron
Messages
243
Reaction score
1
Calculation of real values of $x$ in $\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1} = 2^x+3^x+1$

My Try:: Let $2^x = a$ and $3^x = b$ , Then

$\sqrt{a^2-a\cdot b+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1} = a+b+1$

Now I am struck after that

Help required

Thanks
 
Mathematics news on Phys.org
Hello, jacks!

You are on the right track . . .

Calculate real values of $x$ in

$\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1}$
. . . $=\; 2^x+3^x+1$

My try: .Let $2^x = a$ and $3^x = b$.

Then: $\sqrt{a^2-a\cdot b+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1}$
. . . . $= a+b+1$

Now I am struck after that.
At this point, I have some suspicions . . .

\begin{array}{cccc}\sqrt{a^2-a+1} &amp;=&amp; a &amp; [1] \\<br /> \sqrt{b^2-b+1} &amp;=&amp; b &amp; [2] \\<br /> \sqrt{a^2-ab+b^2} &amp;=&amp; 1 &amp; [3] \end{array}

Square [1]: .a^2-a+1 \:=\:a^2 \quad\Rightarrow\quad a \,=\,1

Square [2]: .b^2-b+1 \:=\:b^2 \quad\Rightarrow\quad b \,=\,1

Then: .a \,=\,1 \quad\Rightarrow\quad 2^x \,=\,1 \quad\Rightarrow\quad \boxed{x \,=\,0}

. . which satisfies all the equations.
 
jacks said:
Calculation of real values of $x$ in $\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1} = 2^x+3^x+1$

My Try:: Let $2^x = a$ and $3^x = b$ , Then

$\sqrt{a^2-a\cdot b+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1} = a+b+1$

Thanks Soroban I have got it.

Now I have use the Inequality $(a-b)^2\geq 0\Rightarrow a^2+b^2\geq 2ab$

Now $3a^2+3b^2\geq 6ab\Rightarrow 4a^2+4b^2-4ab\geq a^2+b^2+2ab$

So $\displaystyle a^2-ab+b^2\geq \frac{a^2+b^2+2ab}{4}\Rightarrow \displaystyle \sqrt{a^2-ab+b^2}\geq \sqrt{\frac{(a+b)^2}{4}} = \frac{a+b}{2}$

So $\displaystyle \sqrt{a^2-ab+b^2}\geq \frac{a+b}{2}$ and equality hold when $a=b$

So $\displaystyle \sqrt{a^2-ab+b^2}+\sqrt{a^2-a+1}+\sqrt{b^2-b+1}\geq a+b+1$

and equality hold when $a = b$. So $2^x = 3^x\Rightarrow x = 0$
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K