MHB Calculate Real Values of $x$ in Exponential Equation

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Exponential
Click For Summary
The discussion focuses on solving the exponential equation involving square roots: $\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1} = 2^x+3^x+1$. A substitution is made where $2^x = a$ and $3^x = b$, leading to the equation $\sqrt{a^2-ab+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1} = a+b+1$. The solution reveals that both $a$ and $b$ equal 1, resulting in $x = 0$ as the only real solution. The discussion also highlights the use of inequalities to establish the conditions under which equality holds, confirming that $x = 0$ satisfies the original equation.
juantheron
Messages
243
Reaction score
1
Calculation of real values of $x$ in $\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1} = 2^x+3^x+1$

My Try:: Let $2^x = a$ and $3^x = b$ , Then

$\sqrt{a^2-a\cdot b+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1} = a+b+1$

Now I am struck after that

Help required

Thanks
 
Mathematics news on Phys.org
Hello, jacks!

You are on the right track . . .

Calculate real values of $x$ in

$\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1}$
. . . $=\; 2^x+3^x+1$

My try: .Let $2^x = a$ and $3^x = b$.

Then: $\sqrt{a^2-a\cdot b+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1}$
. . . . $= a+b+1$

Now I am struck after that.
At this point, I have some suspicions . . .

\begin{array}{cccc}\sqrt{a^2-a+1} &amp;=&amp; a &amp; [1] \\<br /> \sqrt{b^2-b+1} &amp;=&amp; b &amp; [2] \\<br /> \sqrt{a^2-ab+b^2} &amp;=&amp; 1 &amp; [3] \end{array}

Square [1]: .a^2-a+1 \:=\:a^2 \quad\Rightarrow\quad a \,=\,1

Square [2]: .b^2-b+1 \:=\:b^2 \quad\Rightarrow\quad b \,=\,1

Then: .a \,=\,1 \quad\Rightarrow\quad 2^x \,=\,1 \quad\Rightarrow\quad \boxed{x \,=\,0}

. . which satisfies all the equations.
 
jacks said:
Calculation of real values of $x$ in $\sqrt{4^x-6^x+9^x}+\sqrt{9^x-3^x+1}+\sqrt{4^x-2^x+1} = 2^x+3^x+1$

My Try:: Let $2^x = a$ and $3^x = b$ , Then

$\sqrt{a^2-a\cdot b+b^2}+\sqrt{b^2-b+1}+\sqrt{a^2-a+1} = a+b+1$

Thanks Soroban I have got it.

Now I have use the Inequality $(a-b)^2\geq 0\Rightarrow a^2+b^2\geq 2ab$

Now $3a^2+3b^2\geq 6ab\Rightarrow 4a^2+4b^2-4ab\geq a^2+b^2+2ab$

So $\displaystyle a^2-ab+b^2\geq \frac{a^2+b^2+2ab}{4}\Rightarrow \displaystyle \sqrt{a^2-ab+b^2}\geq \sqrt{\frac{(a+b)^2}{4}} = \frac{a+b}{2}$

So $\displaystyle \sqrt{a^2-ab+b^2}\geq \frac{a+b}{2}$ and equality hold when $a=b$

So $\displaystyle \sqrt{a^2-ab+b^2}+\sqrt{a^2-a+1}+\sqrt{b^2-b+1}\geq a+b+1$

and equality hold when $a = b$. So $2^x = 3^x\Rightarrow x = 0$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
17
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K