Calculate the Electric and Magnetic field for this Multipole Radiation

Click For Summary
The discussion focuses on calculating the vector potential and the electric and magnetic fields for a multipole radiation problem. The vector potential is defined using the current density, which is expressed in terms of delta functions and Heaviside step functions to account for time-dependent currents. Participants clarify the need for using retarded time in the calculations, emphasizing that the current density must reflect the time delay due to signal propagation. There are corrections made to the expressions for current density and the integration limits, as well as discussions on approximations for the distance in the integrand. The conversation highlights the complexities of the calculations and the importance of accurately applying physical principles.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Calculate the electric and magnetic field
Relevant Equations
none
Hi

I have problems with the following task

Bildschirmfoto 2024-11-23 um 14.44.43.png

I now wanted to try to calculate the vector potential, which according to my professor's script is defined as follows:

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int d^3\mathbf{x}' \frac{\mathbf{j}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}$$

I have now visualized the problem as follows in 2D with regard to the x and z axes

Bildschirmfoto 2024-11-23 um 14.46.27.png

I'm not so sure, but does the electric as well as the magnetic field consist of a superposition when the particle is at the position ##z_1=a## and ##z_2=-a## and would look like ##E=E_1+E_2## and ##B=B_1+B_2##?

Then the following ##\mathbf{x'}_1=\left(\begin{array}{c} 0 \\\ 0 \\ a \end{array}\right)## and ##\mathbf{x'}_2=\left(\begin{array}{c} 0 \\\ 0 \\ -a \end{array}\right)## would hold and thus ##| \mathbf{x} -\mathbf{x'}_1 |=\sqrt{x^2+y^2+(z-a)^2}##

The electrical current density is defined as follows ##\mathbf{j}=\rho \mathbf{v}## and for this task:

$$\mathbf{j} = Q \cos(\omega t) \left[\delta(z - a) - \delta(z + a)\right] \delta(x) \delta(y) \cdot v \mathbf{e}_z$$

The vector potential can then be calculated as follows:

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int_{-\infty}^{\infty} d^3\mathbf{x}' \frac{Q \cos(\omega t) \left[\delta(z - a) - \delta(z + a)\right] \delta(x) \delta(y)}{\sqrt{x^2+y^2+(z-a)^2}}\cdot v \mathbf{e}_z$$

Would now simplify the potential because ##\mathbf{x'}_1=\left(\begin{array}{c} 0 \\\ 0 \\ a \end{array}\right)## as follows

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int_{-\infty}^{\infty} d\mathbf{z}' \frac{Q \cos(\omega t) \left[\delta(z - a) - \delta(z + a)\right] \delta(x) \delta(y)}{\sqrt{x^2+y^2+(z-a)^2}}\cdot v \mathbf{e}_z$$
 
Physics news on Phys.org
I've just noticed, shouldn't it be?

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int_{-\infty}^{\infty} d\mathbf{z}' \frac{Q \cos(\omega t) \left[\delta(z - a) - \delta(z + a)\right]}{z-a}\cdot v \mathbf{e}_z$$
 
Lambda96 said:
I'm not so sure, but does the electric as well as the magnetic field consist of a superposition when the particle is at the position ##z_1=a## and ##z_2=-a## and would look like ##E=E_1+E_2## and ##B=B_1+B_2##?
The charge accumulations ##q(t)## at ##z = a## and ##z = -a## are not due to a single particle moving back and forth. Instead, there is a time-dependent current ##I(t)## between the points ##z = -a## and ##z = a##.

1732470410086.png



The current ##I(t)## for ##|z|<a## does not depend on ##z## since otherwise there would be charge accumulations at points between ##z = -a## and ##z = a##.

So, the current is ##I = I(t)## for ##|z| < a## and ##I = 0## for ##|z| > a##. Use the Heaviside step function ##H## to express the current for all ##z## as $$I(z, t) = I(t) \left[ H(z-a) - H(z+a) \right].$$ Edit: The right side should read ##I(t) \left[ H(z+a) - H(z-a) \right]##. See post #5.

Note that ##I(t) = \dot q(t) = \dfrac {d }{dt} Q \cos(\omega t) = -\omega Q \sin \omega t##.

The current density vector is then $$\mathbf{j}(z,t) = I(z, t) \delta(x) \delta(y) \hat z = -\omega Q \sin \omega t\left[ H(z-a) - H(z+a) \right] \delta(x) \delta(y) \hat z.$$Edit: The right side should have ##\left[ H(z+a) - H(z-a) \right]## instead of ##\left[ H(z-a) - H(z+a) \right]##.

Verify that this expression for ##\mathbf j## satisfies the charge continuity equation $$\nabla \cdot \mathbf j = - \frac{\partial \rho(t, \mathbf x)}{\partial t}.$$ Recall that the derivative of the step function is a delta function: ##\dfrac{dH(z)}{dz} = \delta(z)##.
 
Last edited:
  • Like
Likes jbergman and Lambda96
Thank you TSny for your help and explanation 👍👍

I have tried to calculate ##\nabla \cdot \mathbf{j}=-\frac{\partial \rho(t, \mathbf{x})}{\partial t}## and get the same result with a sign error. Have I done something wrong in the calculation?


$$\nabla \cdot \mathbf{j}=-\frac{\partial \rho(t, \mathbf{x})}{\partial t}$$
$$- \omega Q \sin(\omega) \left[ \delta(z-a)-\delta(z+a) \right] \delta(x)\delta(y)=\omega Q \sin(\omega) \left[ \delta(z-a)-\delta(z+a) \right] \delta(x)\delta(y)$$

I have now tried to calculate the potential with ##\mathbf{j}(z,t) = -\omega Q \sin \omega t\left[ H(z-a) - H(z+a) \right] \delta(x) \delta(y) \hat z## with the formula from post 2

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int_{-\infty}^{\infty} d\mathbf{z}' \frac{-\omega Q \sin \omega t\left[ H(z-a) - H(z+a) \right]}{z-a}$$

Unfortunately, the integral cannot be solved, which is why I assume that I have done something wrong :smile:
 
Lambda96 said:
Thank you TSny for your help and explanation 👍👍

I have tried to calculate ##\nabla \cdot \mathbf{j}=-\frac{\partial \rho(t, \mathbf{x})}{\partial t}## and get the same result with a sign error. Have I done something wrong in the calculation?
The error is mine.

Instead of ##I(z, t) = I(t) \left[ H(z-a) - H(z+a) \right]##, it should be ##I(z, t) = I(t) \left[ H(z+a) - H(z-a) \right] ##.

Check that $$H(z+a) - H(z-a) = \begin{cases}
1 &\text{if } |z| < a \\
0 &\text{if } |z|>a\\
\end{cases}$$ Thus, $$\mathbf{j}(z,t) =-\omega Q \sin \omega t\left[ H(z+a) - H(z-a) \right] \delta(x) \delta(y) \, \hat {\mathbf z}.$$ Or,
$$\mathbf{j}(t)= \begin{cases}
-\omega Q \sin \omega t \delta(x) \delta(y) \hat {\mathbf z} &\text{if } |z| < a \\
\,\,\,\,0 &\text{if } |z|>a\\
\end{cases}$$

Lambda96 said:
I have now tried to calculate the potential with ##\mathbf{j}(z,t) = -\omega Q \sin \omega t\left[ H(z-a) - H(z+a) \right] \delta(x) \delta(y) \hat z## with the formula from post 2

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int_{-\infty}^{\infty} d\mathbf{z}' \frac{-\omega Q \sin \omega t\left[ H(z-a) - H(z+a) \right]}{z-a}$$

Unfortunately, the integral cannot be solved, which is why I assume that I have done something wrong :smile:

The formula for ##\mathbf{A}## is $$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int d^3\mathbf{x}' \frac{\mathbf{j}(\mathbf{x}', t -|\mathbf{x} - \mathbf{x}'|/c)}{|\mathbf{x} - \mathbf{x}'|}$$ Show that this reduces to $$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^a dz' \frac{I(t -|\mathbf{x} - z' \hat{\mathbf z}|/c)}{|\mathbf{x} - z' \hat{\mathbf z}|} \, \hat {\mathbf{z}}$$ You are only interested in the far zone where ##|\mathbf{x}| >> a##. So you can make appropriate approximations for ##|\mathbf{x} - z' \hat{\mathbf z}|## in the integrand. Hopefully, you've seen this type of approximation before.
 
Thank you for your help and the explanation TSny 👍👍

I have now started to show the following:
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int d^3\mathbf{x}' \frac{\mathbf{j}(\mathbf{x}', t -|\mathbf{x} - \mathbf{x}'|/c)}{|\mathbf{x} - \mathbf{x}'|} \quad \rightarrow \quad \mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^a dz' \frac{I(t -|\mathbf{x} - z' \hat{\mathbf z}|/c)}{|\mathbf{x} - z' \hat{\mathbf z}|} \, \hat {\mathbf{z}}$$

Unfortunately, I don't quite understand why ##t \quad \rightarrow \quad \frac{t -|\mathbf{x} - z' \hat{\mathbf z}|}{c}## holds, so I have now left the t as it is

$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int d^3\mathbf{x}' \frac{\mathbf{j}(\mathbf{x}', t )}{|\mathbf{x} - \mathbf{x}'|}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int d^3\mathbf{x}' \frac{-w Q \sin(\omega t) \left[H(z+a)-H(z-a)\right]\delta(x')\delta(y') \mathbf{\hat z}}{|\mathbf{x} - \mathbf{x}'|}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int d^3\mathbf{x}' \frac{-w Q \sin(\omega t) \left[H(z+a)-H(z-a)\right]\delta(x')\delta(y') \mathbf{\hat z}}{\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{- \infty}^{\infty} \int_{- \infty}^{\infty} \int_{- \infty}^{\infty} dx' dy' dz'\frac{-w Q \sin(\omega t) \left[H(z+a)-H(z-a)\right]\delta(x')\delta(y') \mathbf{\hat z}}{\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{- \infty}^{\infty} dz'\frac{-w Q \sin(\omega t) \left[H(z+a)-H(z-a)\right] \mathbf{\hat z}}{\sqrt{x^2+y^2+(z-z')^2}}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^{a} dz'\frac{-w Q \sin(\omega t) \mathbf{\hat z}}{\sqrt{x^2+y^2+(z-z')^2}}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^{a} dz'\frac{-w Q \sin(\omega t) \mathbf{\hat z}}{|\mathbf{x} - z' \hat{\mathbf z}|}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^{a} dz'\frac{I(t) \mathbf{\hat z}}{|\mathbf{x} - z' \hat{\mathbf z}|}$$

Would that be correct?
 
Lambda96 said:
I have now started to show the following:
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int d^3\mathbf{x}' \frac{\mathbf{j}(\mathbf{x}', t -|\mathbf{x} - \mathbf{x}'|/c)}{|\mathbf{x} - \mathbf{x}'|} \quad \rightarrow \quad \mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^a dz' \frac{I(t -|\mathbf{x} - z' \hat{\mathbf z}|/c)}{|\mathbf{x} - z' \hat{\mathbf z}|} \, \hat {\mathbf{z}}$$

Unfortunately, I don't quite understand why ##t \quad \rightarrow \quad \frac{t -|\mathbf{x} - z' \hat{\mathbf z}|}{c}## holds, so I have now left the t as it is
The time argument for ##\mathbf{j}## in the integrand needs to be the "retarded time" ##\dfrac{t -|\mathbf{x} - z' \hat{\mathbf z}|}{c}##. A change in current density at time ##t'## at point ##z'## in the antenna is not "felt" at the distant field point ##\mathbf x## until the later time ##t = t' + \dfrac{|\mathbf{x} - z' \hat{\mathbf z}|}{c}##. The time delay ##\dfrac{|\mathbf{x} - z' \hat{\mathbf z}|}{c}## is the "propagation time" for a signal traveling at light speed to get from ##z' \hat{\mathbf z}## to ##\mathbf{x}##.

In other words, ##\mathbf{A}(\mathbf x, t)## depends on what the source at ##z'## was doing at the earlier ("retarded") time ##t '= t - \dfrac{|\mathbf{x} - z' \hat{\mathbf z}|}{c}##.

Since different points of the antenna have different values of ##z'##, the retarded time for a fixed field-point-time ##t## is a function of ##z'##. This is the main complication in doing the integration.

Lambda96 said:
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int d^3\mathbf{x}' \frac{\mathbf{j}(\mathbf{x}', t )}{|\mathbf{x} - \mathbf{x}'|}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int d^3\mathbf{x}' \frac{-w Q \sin(\omega t) \left[H(z+a)-H(z-a)\right]\delta(x')\delta(y') \mathbf{\hat z}}{|\mathbf{x} - \mathbf{x}'|}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int d^3\mathbf{x}' \frac{-w Q \sin(\omega t) \left[H(z+a)-H(z-a)\right]\delta(x')\delta(y') \mathbf{\hat z}}{\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{- \infty}^{\infty} \int_{- \infty}^{\infty} \int_{- \infty}^{\infty} dx' dy' dz'\frac{-w Q \sin(\omega t) \left[H(z+a)-H(z-a)\right]\delta(x')\delta(y') \mathbf{\hat z}}{\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{- \infty}^{\infty} dz'\frac{-w Q \sin(\omega t) \left[H(z+a)-H(z-a)\right] \mathbf{\hat z}}{\sqrt{x^2+y^2+(z-z')^2}}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^{a} dz'\frac{-w Q \sin(\omega t) \mathbf{\hat z}}{\sqrt{x^2+y^2+(z-z')^2}}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^{a} dz'\frac{-w Q \sin(\omega t) \mathbf{\hat z}}{|\mathbf{x} - z' \hat{\mathbf z}|}$$
$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^{a} dz'\frac{I(t) \mathbf{\hat z}}{|\mathbf{x} - z' \hat{\mathbf z}|}$$

Would that be correct?

Yes, that all looks good except for the need to use the retarded time in the integrand.
 
  • Like
Likes WWGD, PhDeezNutz and Lambda96
Thank you TSny for your help and the explanation regarding the retarded time 👍👍, I have now inserted this into my expression :smile:

I've been thinking about the approximation and unfortunately I can't get any further. The only thing I can think of would be a binomial expansion, as I often had this in my calculus course, so

$$|\mathbf{x}-z' \mathbf{\hat z}| \approx |\mathbf{x}| \Bigl( 1- \frac{z z'}{|\mathbf{x}|^2} \Bigr)$$

Did you mean this approximation?
 
Lambda96 said:
I've been thinking about the approximation and unfortunately I can't get any further. The only thing I can think of would be a binomial expansion, as I often had this in my calculus course, so

$$|\mathbf{x}-z' \mathbf{\hat z}| \approx |\mathbf{x}| \Bigl( 1- \frac{z z'}{|\mathbf{x}|^2} \Bigr)$$

Did you mean this approximation?
Yes, that's it.

If we let ##r = |\mathbf x##|, then your result can be expressed as $$|\mathbf{x}-z' \mathbf{\hat z}| \approx r ( 1- \frac{z z'}{r^2} )$$ A nice way to express this is to note that ##\dfrac {z}{r} = \cos\theta##, where ##\theta## is the angle between the z-axis and ##\mathbf x##. Thus, $$|\mathbf{x}-z' \mathbf{\hat z}| \approx r ( 1- \frac{z' \cos \theta}{r} ) = r - z' \cos \theta$$
Note that ##|\mathbf{x}-z' \mathbf{\hat z}|## occurs in two places in the integrand for ##\mathbf A(\mathbf x, t)##: (1) in the denominator and (2) in the retarded time for the argument of ##\mathbf j##. In the far zone, we only need to keep terms where ##|\mathbf A|## falls off with distance ##r## as ##1/r## and we can ignore terms for which ##|\mathbf A|## falls off as ##1/r^2## or faster. This helps with making the approximation for the denominator. You'll also need to work on getting the correct approximation for the argument of ##\mathbf j##.
 
  • #10
Thanks again for your help and explanations TSny 👍👍

I have now started with the denominator. I now have the expression ##|\mathbf{x}-z' \mathbf{\hat z}| \approx r ( 1- \frac{z' \cos \theta}{r} ) = r - z' \cos \theta## since we are interested in the far zone, the following applies ##r \gg z'## which means that I can simply ignore the term ##z' \cos \theta## and the integral looks like this:

$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^{a} dz'\frac{- \omega Q \sin(\omega(t-\frac{|\mathbf{x}-z' \mathbf{\hat z}|}{c}))}{r}$$

Unfortunately I still have some problems with the numerator, I have now used the approximation in the sine, which then looks like this:

$$\omega \left( t - \frac{\lvert \mathbf{x} - z' \hat{\mathbf{z}} \rvert}{c} \right) \approx \omega \left( t - \frac{r }{c} + \frac{z' \cos\theta}{c} \right)=\omega \left( t - \frac{r}{c} \right) + \frac{\omega z' \cos\theta}{c}$$

If the ##\omega## didn't appear in ##\frac{\omega z' \cos\theta}{c}##, I would have simply argued that this term can simply be omitted, as it is extremely small, because ##\omega## could be a large number, which is why it no longer works. Then I wanted to use ##\sin(A+B)=\cos(B)\sin(A)+\cos(A)\sin(B)##, but that doesn't get rid of the term ##\sin(\cos(\theta))##, it actually makes it worse 🙃
 
  • #11
Lambda96 said:
I have now started with the denominator. I now have the expression ##|\mathbf{x}-z' \mathbf{\hat z}| \approx r ( 1- \frac{z' \cos \theta}{r} ) = r - z' \cos \theta## since we are interested in the far zone, the following applies ##r \gg z'## which means that I can simply ignore the term ##z' \cos \theta## and the integral looks like this:

$$\mathbf{A}(\mathbf{x}, t) = \frac{1}{c} \int_{-a}^{a} dz'\frac{- \omega Q \sin(\omega(t-\frac{|\mathbf{x}-z' \mathbf{\hat z}|}{c}))}{r}$$
Looks good.

Lambda96 said:
Unfortunately I still have some problems with the numerator, I have now used the approximation in the sine, which then looks like this:

$$\omega \left( t - \frac{\lvert \mathbf{x} - z' \hat{\mathbf{z}} \rvert}{c} \right) \approx \omega \left( t - \frac{r }{c} + \frac{z' \cos\theta}{c} \right)=\omega \left( t - \frac{r}{c} \right) + \frac{\omega z' \cos\theta}{c}$$
Good.

Lambda96 said:
If the ##\omega## didn't appear in ##\frac{\omega z' \cos\theta}{c}##, I would have simply argued that this term can simply be omitted, as it is extremely small, because ##\omega## could be a large number, which is why it no longer works.
Right. You need to keep ##\frac{\omega z' \cos\theta}{c}##. Very good.

Lambda96 said:
Then I wanted to use ##\sin(A+B)=\cos(B)\sin(A)+\cos(A)\sin(B)##,
Good.

Lambda96 said:
but that doesn't get rid of the term ##\sin(\cos(\theta))##, it actually makes it worse 🙃
When integrating over ##z'##, ##\theta## is fixed.
Since you are integrating from ##-a## to ##a##, consider if ##\sin(\frac{\omega z' \cos\theta}{c})## and ##\cos(\frac{\omega z' \cos\theta}{c})## are even or odd functions of ##z'##.
 
  • Like
Likes WWGD, Lambda96 and PhDeezNutz
  • #12
Thanks again for your help TSny and the tip 👍👍 that ##\cos## and ##\sin## are even and odd functions.

If I have not miscalculated, I have got the following result:

$$\mathbf{A}(r,t)=\frac{-2Q \omega \sin\Bigl(\frac{w z' \cos(\theta)}{c} \Bigr)\sin\Bigl(\omega \Bigl( \frac{t-r}{c}\Bigr)\Bigr)}{r \cos(\theta)}$$
 
  • #13
Lambda96 said:
If I have not miscalculated, I have got the following result:

$$\mathbf{A}(r,t)=\frac{-2Q \omega \sin\Bigl(\frac{w z' \cos(\theta)}{c} \Bigr)\sin\Bigl(\omega \Bigl( \frac{t-r}{c}\Bigr)\Bigr)}{r \cos(\theta)}$$
Getting close. But, I see some typos and other errors:

(1) ##\mathbf{A}(r,t)## should be ##\mathbf{A}(r, \theta, t)##.

(2) You need a unit vector to specify the direction of ##\mathbf {A}##.

(3) Your expression does not have the correct dimensions for ##\mathbf{A}##.

(4) The argument for the second sine function has a typo.

(5) Your result should not depend on ##z'##. You integrated over ##z'## (hopefully).
 
  • #14
Thanks again for your help TSny 👍

I have now corrected all the points you listed, except for point (3) where I am not sure if the expression now has the correct dimension:

$$\mathbf{A}(r,t, \theta)=\frac{-2Q \omega \sin\Bigl(\frac{w a \cos(\theta)}{c} \Bigr)\sin\Bigl(\omega \Bigl( \frac{ct-r}{c}\Bigr)\Bigr)}{r \cos(\theta)} \mathbf{\hat z}$$
 
  • #15
Lambda96 said:
I have now corrected all the points you listed, except for point (3) where I am not sure if the expression now has the correct dimension:

$$\mathbf{A}(r,t, \theta)=\frac{-2Q \omega \sin\Bigl(\frac{w a \cos(\theta)}{c} \Bigr)\sin\Bigl(\omega \Bigl( \frac{ct-r}{c}\Bigr)\Bigr)}{r \cos(\theta)} \mathbf{\hat z}$$
Very close.

Regarding the dimensions, pick a formula that makes it easy to see what the dimensions should be. For example $$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int d^3\mathbf{x}' \frac{\mathbf{j}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}.$$
 
  • #16
Tanke for your help TSny 👍

The individual dimensions (SI) of the terms are as follows:

$$c=\frac{m}{s}, \quad |\mathbf{x} - \mathbf{x}'|=m, \quad \mathbf{j}=\frac{A}{m^2}$$

If I now insert this into the equation from your post 15, I get ##\frac{s}{m} \frac{\frac{A}{m^2}}{m}=\frac{A s}{m^4}##, but if I'm not mistaken I should get ##\frac{V s}{m}##.
 
  • #17
We are working in Gaussian units where $$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int d^3\mathbf{x}' \frac{\mathbf{j}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|}.$$ Consider dimensions rather than units. Using square brackets for indicating the dimension of a quantity, $$[\mathbf A] = \frac{1}{[c]} [d^3x] [\mathbf j] \frac 1 {[x]} = \frac{1}{[L]/[T]} [L]^3 [\mathbf j] \frac 1 {[L]}$$ where ##[L]## is dimension of length and ##[T]## is dimension of time. From the definition of current density ##\mathbf j##, work out ##[\mathbf j]## in terms of ##[Q], [L],## and ##[T]##. Here, ##[Q]## is the dimension of charge. Thus, reduce ##[\mathbf A##] to some combination of ##[Q], [L]##, and ##[T]##.

Compare with the dimensions of your result for ##\mathbf A## in post ##14##.
 
  • #18
Lambda96 said:
The individual dimensions (SI) of the terms are as follows:
$$c=\frac{m}{s}, \quad |\mathbf{x} - \mathbf{x}'|=m, \quad \mathbf{j}=\frac{A}{m^2}$$
Don't forget to include the ##d^3\mathbf{x}'=m^3## term!
 
  • #19
Thanks again for all your help and explanations TSny 👍👍 also thanks renormalize for your help 👍

Now I see where I made the mistake :smile:
 
  • Like
Likes TSny and WWGD
  • #20
Lambda96 said:
Thanks again for all your help and explanations TSny 👍👍 also thanks renormalize for your help 👍

Now I see where I made the mistake :smile:
Only in PF you get (re)normalized help!
 
  • Like
Likes Lambda96, PhDeezNutz, tech99 and 2 others