1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Calculate the following limit ( not sure if possible!)

  1. Dec 26, 2013 #1
    1. The problem statement, all variables and given/known data
    Calculate the following limit for real [itex] t [/itex]-s.

    [tex]
    \sum_{n=0}^{∞} exp[i\cdot \sqrt{n + 1}\cdot t] / n!
    [/tex]

    2. Relevant equations
    None

    3. The attempt at a solution
    Without the root it's trivial... I am not sure if it is even possible to give a closed form, I am out of ideas. Any help would be greatly appreciated!
     
  2. jcsd
  3. Dec 26, 2013 #2

    jbunniii

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    What have you tried? A reasonable first step would be to put ##m = \sqrt{n+1}##. What does that give you?
     
  4. Dec 26, 2013 #3
    Thank you for your efforts! I've tried that, but I think it won't help, because m won't be an integer. I also tried to approximate with an intergral using Stirling's formula for n!, but the resulting intergral seems too complicated. I'm also considering to use somehow the residue theorem, but so far nothing.
     
  5. Dec 26, 2013 #4
    You can build an Excel spreadsheet in about five minutes to do the calculation to a very good approximation:
    For T=pi, for example, the limit is approximately Lim = .539061035756653 -i*.335197295005148.
     
  6. Dec 26, 2013 #5

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Not sure whether it provides any useful clues, but here are a couple of plots. One plots y against x (i.e. complex plane), the other plots r and theta as functions of t. For the second, I normalised r by dividing by the t=0 value (e), and normalised theta by subtracting t (which seems to be the asymptotic behaviour) then dividing by pi.
     

    Attached Files:

Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Calculate the following limit ( not sure if possible!)
Loading...