MHB Calculate the integral using the Fourier coefficients

Click For Summary
The discussion focuses on calculating the integral of the square of a periodic signal using its Fourier coefficients. The user confirms the relationship between the integral of the squared signal and the sum of the squares of its Fourier coefficients, questioning their calculation due to an unexpected result. Another participant suggests a correction in the summation limits of the Fourier coefficients and reinforces that the integral of the squared signal can be equated to the integral of the squared magnitude of the signal. The conversation highlights the importance of correctly applying Fourier series properties in signal analysis. The final conclusion emphasizes the relationship between the Fourier coefficients and the integral of the signal's square.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

A real periodic signal with period $T_0=2$ has the Fourier coefficients $$X_k=\left [2/3, \ 1/3e^{j\pi/4}, \ 1/3e^{-i\pi/3}, \ 1/4e^{j\pi/12}, \ e^{-j\pi/8}\right ]$$ for $k=0,1,2,3,4$.
I want to calculate $\int_0^{T_0}x^2(t)\, dt$.

I have done the following:

It holds that $$\frac{1}{T_0}\int_{T_0}|x(t)|^2\, dt=\sum_{k=-\infty}^{+\infty}|X_k|^2$$ right? (Wondering)

Then do we get $$\int_{T_0}|x(t)|^2\, dt=2\sum_{k=-\infty}^{+\infty}|X_k|^2=2\left [\left(\frac{2}{3}\right )^2+\left(\frac{1}{3}\right )^2+\left(\frac{1}{3}\right )^2+\left(\frac{1}{4}\right )^2+1\right ]$$ But the result that I get is not one of the choices. So have I done something wrong? (Wondering)
 
Mathematics news on Phys.org
Hey mathmari!

Shouldn't it be:
$$\frac{1}{T_0}\int_{T_0}|x(t)|^2\, dt
=\sum_{k=-N}^{+N}|X_k|^2 \\
\int_{T_0}|x(t)|^2\, dt
=T_0\sum_{k=-N}^{+N}|X_k|^2
=2\left\{\left(\frac{2}{3}\right )^2 + 2\left [\left(\frac{1}{3}\right )^2+\left(\frac{1}{3}\right )^2+\left(\frac{1}{4}\right )^2+1\right ]\right\}$$
(Wondering)

Oh, and since it's given that $x(t)$ is a real signal, we can write $\int_{T_0}|x(t)|^2\, dt = \int_{T_0}x(t)^2\, dt$, can't we? (Wondering)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads