MHB Calculate the integral using the Fourier coefficients

Click For Summary
The discussion focuses on calculating the integral of the square of a periodic signal using its Fourier coefficients. The user confirms the relationship between the integral of the squared signal and the sum of the squares of its Fourier coefficients, questioning their calculation due to an unexpected result. Another participant suggests a correction in the summation limits of the Fourier coefficients and reinforces that the integral of the squared signal can be equated to the integral of the squared magnitude of the signal. The conversation highlights the importance of correctly applying Fourier series properties in signal analysis. The final conclusion emphasizes the relationship between the Fourier coefficients and the integral of the signal's square.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

A real periodic signal with period $T_0=2$ has the Fourier coefficients $$X_k=\left [2/3, \ 1/3e^{j\pi/4}, \ 1/3e^{-i\pi/3}, \ 1/4e^{j\pi/12}, \ e^{-j\pi/8}\right ]$$ for $k=0,1,2,3,4$.
I want to calculate $\int_0^{T_0}x^2(t)\, dt$.

I have done the following:

It holds that $$\frac{1}{T_0}\int_{T_0}|x(t)|^2\, dt=\sum_{k=-\infty}^{+\infty}|X_k|^2$$ right? (Wondering)

Then do we get $$\int_{T_0}|x(t)|^2\, dt=2\sum_{k=-\infty}^{+\infty}|X_k|^2=2\left [\left(\frac{2}{3}\right )^2+\left(\frac{1}{3}\right )^2+\left(\frac{1}{3}\right )^2+\left(\frac{1}{4}\right )^2+1\right ]$$ But the result that I get is not one of the choices. So have I done something wrong? (Wondering)
 
Mathematics news on Phys.org
Hey mathmari!

Shouldn't it be:
$$\frac{1}{T_0}\int_{T_0}|x(t)|^2\, dt
=\sum_{k=-N}^{+N}|X_k|^2 \\
\int_{T_0}|x(t)|^2\, dt
=T_0\sum_{k=-N}^{+N}|X_k|^2
=2\left\{\left(\frac{2}{3}\right )^2 + 2\left [\left(\frac{1}{3}\right )^2+\left(\frac{1}{3}\right )^2+\left(\frac{1}{4}\right )^2+1\right ]\right\}$$
(Wondering)

Oh, and since it's given that $x(t)$ is a real signal, we can write $\int_{T_0}|x(t)|^2\, dt = \int_{T_0}x(t)^2\, dt$, can't we? (Wondering)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K