Calculate the rotational inertia of the pendulum

Click For Summary
SUMMARY

The discussion focuses on calculating the rotational inertia of a pendulum consisting of a uniform disk and a uniform rod. The pendulum's parameters include a disk with a radius of 10.0 cm and mass of 500 g, and a rod with a length of 500 mm and mass of 270 g. The calculated rotational inertia about the pivot point is 0.205 kg m², the distance between the pivot point and the center of mass is 47.7 cm, and the period of oscillation is 1.5 seconds. Participants clarified the use of the parallel axis theorem and the correct application of moment of inertia formulas for both components.

PREREQUISITES
  • Understanding of rotational inertia and its calculation
  • Familiarity with the parallel axis theorem
  • Knowledge of basic physics formulas for oscillation and moment of inertia
  • Ability to perform unit conversions (e.g., grams to kilograms, centimeters to meters)
NEXT STEPS
  • Study the parallel axis theorem in detail
  • Learn about the moment of inertia for various geometric shapes
  • Explore the derivation of the period of oscillation formula for pendulums
  • Practice problems involving combined rotational inertia of multiple objects
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and rotational dynamics, as well as educators seeking to clarify concepts related to pendulum motion and moment of inertia calculations.

LandOfStandar
Messages
60
Reaction score
0

Homework Statement


The pendulum consists of a uniform disk with radius r=10.0cm and mass 500g attached to a uniform rod with length L=500mm and mass 270g.
a. Calculate the rotational inertia of the pendulum about the pivot point.
(answer .205kg m^2)
b. What is the distance between the pivot point and the center of mass of the pendulum?
(answer 47.7 cm)
c. Calculate the period of oscillation.
(answer 1.5s)

Homework Equations


Ic for rod is 1/12 x M x L^2
Ic for disk is 1/2 x M x R^2
Io is Ic + mh^2, where h is from the point of pivot to the center of mas.
T=2 x pi x [Io / (mgh)]^(1/2)

The Attempt at a Solution


a. Ic = 1/12 x M x L^2 = (1/12) x (.270kg) x (.500m)^2 = .005625 kg m^2 the rod
Ic = 1/2 x M x R^2 = (1/2) x (.500kg) x (.100m)^2 = .0025 kg m^2 the disk
Io = Ic + mh^2, I don't know what to do with the two Ic, and cannot find the Io without h, which is to be found in question b. What am I missing?

b. Io = Ic + mh^2 = .205 kg m^2 = Ic + (.770kg)(h^2) to find h, but cannot find Ic with the two previous number I got. No Idea Need Help!

c. T= 2 x pi x [Io / (mgh)]^(1/2) =
2 x pi x [(.205kg m^2) / [(.770kg)(9.81m/s^2)(.477m)]]^(1/2)= 1.5s
can get with the answers for a and b

If someone had msn (horseland20@hotmail.com) I will be on if you can help if not post!
I would appreciate the help.
 
Last edited:
Physics news on Phys.org
Any one able to help, I have spent over two hours getting no where. Suggestion may help!
 
LandOfStandar said:

The Attempt at a Solution


a. Ic = 1/12 x M x L^2 = (1/12) x (.270kg) x (.500m)^2 = .005625 kg m^2 the rod
Ic = 1/2 x M x R^2 = (1/2) x (.500kg) x (.100m)^2 = .0025 kg m^2 the disk
So far, you've calculated the moment of inertia of each piece about its own center of mass. Now use the parallel axis theorem to find the moment of inertia of each piece about the pivot point.
Io = Ic + mh^2, I don't know what to do with the two Ic, and cannot find the Io without h, which is to be found in question b. What am I missing?
You don't need the center of mass of the pendulum to answer this part of the question.
 
Doc Al said:
So far, you've calculated the moment of inertia of each piece about its own center of mass. Now use the parallel axis theorem to find the moment of inertia of each piece about the pivot point.

I don't mean to be dumb:confused:, but i thought I used the parallel axis theorem, because that is where I from the formulas:redface:.
 
Where did you use the parallel axis theorem? I just see your calculations for the two Ic's.
 
My textbook stats the parallel axis theorem for a disk is 1/2 x M x R^2
and a thin rod 1/12 x M x L^2, maybe I call is it Ic when it is not.
 
LandOfStandar said:
My textbook stats the parallel axis theorem for a disk is 1/2 x M x R^2
and a thin rod 1/12 x M x L^2, maybe I call is it Ic when it is not.
Please double-check your book--it can't be that bad! :wink:

Ic means the moment of inertia about the center of mass. Those are just the formulas for calculating the moment inertia of those two shapes about their centers.

The parallel axis theorem allows you to use Ic to find the momentum of inertia about some other (parallel) axis. That's what you need to use to find the moment of inertia about the pivot point. Read this: http://hyperphysics.phy-astr.gsu.edu/hbase/parax.html"
 
Last edited by a moderator:
You are correct, I am reading my book wrong. they are Ic formulas.

So what I am stuck on is what is the d(in the formula and the site) or h in the one I stated Io is Ic + mh^2.

I have no idea, except is h not what b is asking for?
 
For part a, you need the moment of inertia of each piece about the pivot point. So "d" in the parallel axis formula is the distance from the center of each piece to the pivot point.

In part b, you need the distance from the pivot to the center of mass of the pendulum. (So you would first figure out where the center of mass is.)
 
  • #10
ok, thanks for clearing that up!

to make sure,

Ic = 1/12 x M x L^2 = (1/12) x (.270kg) x (.500m)^2 = .005625 kg m^2 the rod
Ic = 1/2 x M x R^2 = (1/2) x (.500kg) x (.100m)^2 = .0025 kg m^2 the disk

I= Ic of rod + Md^2 = (.005625 kg m^2) + (.270kg)(.250m)^2 = .0225kg m^2 both mass and I = Ic of disk + MD^2 = (.0025 kg m^2) + (.500kg)(.6)^2 = .1825kg m^2

.0225kg m^2 + .1825kg m^2 = .205 kg m^2 got it.Now help with question b
 
Last edited:
  • #11
LandOfStandar said:
Ic = 1/12 x M x L^2 = (1/12) x (.270kg) x (.500m)^2 = .005625 kg m^2 the rod
Ic = 1/2 x M x R^2 = (1/2) x (.500kg) x (.100m)^2 = .0025 kg m^2 the disk
That looks good.
I= Ic of rod + Md^2 = (.005625 kg m^2) + (.270kg)(.250m)^2 = .0225kg m^2
That looks good.

or is M .770kg both mass
No.

and I = Ic of disk + MD^2 = (0025 kg m^2) + (.500kg)(.05)^2 = .00375kg m^2
What's the distance between the center of the disk and the pivot? (It depends on whether the rod ends at the edge or the center of the disk.)
 
  • #12
Got it, thank! While I was waiting I reread and got it from what you said before, thank you so much. It feels good to have it!
 
  • #13
I got part b and it feel so good to have got this problem!

Thanks So Much!
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 28 ·
Replies
28
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K