Calculate the total energy required to fly a drone on this flight plan

Click For Summary

Discussion Overview

The discussion revolves around calculating the total energy consumption of drone batteries based on a specified flight plan. Participants explore various inputs and formulas related to drone flight dynamics, including horizontal distance, vertical speeds, current load, and battery capacity. The focus is on theoretical calculations and assumptions rather than practical measurements.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant outlines a method for calculating total flight time using the Haversine formula and vertical speeds, proposing that energy can be derived from the formula: Energy = Flight Time x CurrentLoadInFlight x Speed².
  • Another participant questions the feasibility of calculating CurrentLoadInFlight, suggesting it should be measured experimentally rather than calculated, and emphasizes the importance of drone mass and wind speed in energy consumption calculations.
  • A third participant provides a reference to a thesis on trajectory simulation and battery modeling for electric unmanned aerial vehicles, potentially offering additional insights.
  • One participant points out a misunderstanding regarding the calculation of ascent time, clarifying that it should be calculated as time = altitude/speed, and notes that the term "energy" in the original formula may refer to battery capacity rather than energy in Joules.

Areas of Agreement / Disagreement

Participants express differing views on the calculation of CurrentLoadInFlight, with some suggesting it should be experimentally determined while others attempt to derive it theoretically. There is no consensus on the importance of additional factors such as drone mass and wind speed, indicating ongoing debate.

Contextual Notes

Limitations include assumptions about constant current load during flight, the absence of drone mass in calculations, and the lack of consideration for external factors like wind speed, which may affect energy consumption.

Xamaa
Messages
4
Reaction score
0
How much energy will drone batteries will consume if I have the following inputs,

By using provided GPS flight path data I've calculated total horizontal distance using Haversine formula, and multiplying this distance with provided horizantal speed I've total horizontal flying time. By multiplying ascend speed with total altitude (considering starting altitude is 0) I've calculated total ascending time, and same way using the descending speed I've calculated total descending time. By adding these 3 now I've the total flight time.

Now for further calculation I've following data inputs,

Code:
{
  "currentLoadInFlight": {
    "ascension": 0.020,
    "descent": 0.010,
    "translation": 0.015
  },
  "forcedLandingCharge": 200
}

{
  "verticalSpeeds": {
    "ascension": 5.0,
    "descent": 1.0
  },
  "energy": {
    "numberOfBatteries": 2,
    "capacity": 2000
  },
  "payload": {
    "additionalLoad": 0.1
  }
}
and details of these fields are as follows,

#configurations

[verticalSpeeds][ascension] the vertical speed of the drone during an ascension in meter / seconds (m/s)
[verticalSpeeds][descent] the vertical speed of the drone during a descent in meter / seconds (m/s)
[energy][numberOfBatteries] is the number of batteries mounted on the drone
[energy][capacity] is the capacity of the battery in milli Ampere Hour (mAh)
[payload][additionalLoad] is the extra load in in Ampere x Seconds ² / Meters ² (A.s²/m² ) caused by the payload (see [currentLoadInFlight])
#drones

[currentLoadInFlight] in Ampere x Seconds ² / Meters ² (A.s²/m² )
The current load in A per square unit of speed ((m/s)²) on the drone power system when it is flying

In vertical ascension [ascension]
In vertical descent [descent]
In horizontal translation [translation]
NOTE: We assume that this to remain constant thorough the mission.
[forcedLandingCharge] in milli Ampere Hour (mAh)

When the available charge is the batteries is less or equal to [forcedLandingCharge], the drone will land
Now considering energy can be calculated using,

Energy = Flight Time x CurrentLoadInFlight x Speed²
How do I calculate CurrentLoadInFlight and speed parameter?
 
Physics news on Phys.org
Xamaa said:
How much energy will drone batteries will consume if I have the following inputs,

By using provided GPS flight path data I've calculated total horizontal distance using Haversine formula, and multiplying this distance with provided horizantal speed I've total horizontal flying time. By multiplying ascend speed with total altitude (considering starting altitude is 0) I've calculated total ascending time, and same way using the descending speed I've calculated total descending time. By adding these 3 now I've the total flight time.

Now for further calculation I've following data inputs,

Code:
{
  "currentLoadInFlight": {
    "ascension": 0.020,
    "descent": 0.010,
    "translation": 0.015
  },
  "forcedLandingCharge": 200
}

{
  "verticalSpeeds": {
    "ascension": 5.0,
    "descent": 1.0
  },
  "energy": {
    "numberOfBatteries": 2,
    "capacity": 2000
  },
  "payload": {
    "additionalLoad": 0.1
  }
}
and details of these fields are as follows,web hosting in Sri lanka[/color]
[currentLoadInFlight] in Ampere x Seconds ² / Meters ² (A.s²/m² )
The current load in A per square unit of speed ((m/s)²) on the drone power system when it is flying

In vertical ascension [ascension]
In vertical descent [descent]
In horizontal translation [translation]
NOTE: We assume that this to remain constant thorough the mission.
[forcedLandingCharge] in milli Ampere Hour (mAh)

When the available charge is the batteries is less or equal to [forcedLandingCharge], the drone will land
Now considering energy can be calculated using,

Energy = Flight Time x CurrentLoadInFlight x Speed²
How do I calculate CurrentLoadInFlight and speed parameter?
anyone here that can response my question, any kind of help would be appreciated thanks.
 
I see no way to calculate CurrentLoadInFlight . If the drone hovers so that the speed=0, it still uses energy. An inefficient drone uses more power than an efficient one. I think CurrentLoadInFlight is something that must be measured by experiment, not calculated.

I also miss seeing the drone mass in your calculations. It matters whether the drone weighs a ton or an ounce.

Where is wind speed?
 
Xamaa said:
By multiplying ascend speed with total altitude (considering starting altitude is 0) I've calculated total ascending time, and same way using the descending speed I've calculated total descending time.
Assuming a constant assent speed, the time is not the multiplication altitude and speed. The assent time is $$t= \frac{altitude}{speed}$$

You state
Energy = Flight Time x CurrentLoadInFlight x Speed²

I realize now you actually mean battery capacity in Amp-s not energy as in Joules.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K