MHB Calculating a Logarithmic Product Series

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
compute the product.

$\left(\log_{2}\left({3}\right)\right)\cdot
\left(\log_{3}\left({4}\right)\right)\cdot
\left(\log_{4}\left({5}\right)\right)\cdots
\left(\log_{126}\left({127}\right)\right)\cdot
\left(\log_{127}\left({128}\right)\right)$

The answer to this is 7
I assume this can be done with a $\lim_{{2}\to{127}}$

or use a change of base

$\frac{\log\left({3}\right)}{\log\left({2}\right)}\cdot
\frac{\log\left({4}\right)}{\log\left({3}\right)}$ etc

but I can't seem to figure out the setup:confused:
 
Mathematics news on Phys.org
You are on the right track with the change of base formula. Write the product as follows:

$$\frac{\log_2(3)\cdot\log_2(4)\cdots\log_2(127)\log_2(128)}{\log_2(3)\cdot\log_2(4)\cdots\log_2(126)\log_2(127)}$$

After cancelling, you are then left with:

$$\log_2(128)=\log_2\left(2^7\right)=7\log_2(2)=7$$
 
Really, it's that easy, (Speechless)(Speechless)(Speechless)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top