Calculating Angle & Speed to Reach Planet's Moon from Station Orbit

AI Thread Summary
To calculate the angle and speed required for a station in orbit to reach a planet's moon, one must consider the principles of tangential velocity and conservation of energy. An increase in velocity at a specific point in the orbit will alter the orbit's height, potentially transitioning it to an elliptical path. Clarification is needed on the term "opposite orbit," which may refer to the resulting trajectory after an impulse is applied. The problem also requires knowledge of the initial angular separation between the station and the moon, as this affects the timing and effectiveness of the impulse. Ultimately, the solution hinges on applying orbital mechanics principles to determine the optimal angle and velocity for the maneuver.
dirb
Messages
3
Reaction score
0
Homework Statement
Find angle and velocity
Relevant Equations
Unsure
A station is orbiting a planet at a distance R1, a moon is orbiting the planet at distance R2 with the period T. The planet itself has a radius rp and a mass mp. We know that when an object adds its velocity at a point in the orbit, the height of the opposite orbit will increase. Determine the angle $\theta$ and additional speed so that the station reaches the moon of the planet.

I was thinking that it has something to do with tangential velocity, and conservation of energy but I don't know how to write the maths? Which concepts should I use in this problem? thanks!
 
Physics news on Phys.org
dirb said:
Homework Statement:: Find angle and velocity
Relevant Equations:: Unsure

We know that when an object adds its velocity at a point in the orbit, the height of the opposite orbit will increase.
Unsure what is meant by "when an object adds its velocity". Do you mean "when an impulse is given to an object in orbit so as to increase its speed"?
And what is the "opposite orbit"? Is this a translation?

As to reaching the moon, a one time impulse to an object in a circular orbit will produce an elliptical one. And even if we got the station into the same circular orbit as the moon, it would necessarily be at the same period as the moon, so still might never reach it. I don't see how the question can be answered without knowing the initial angular separation of the bodies.

Edit: assuming the two given radii are different, the periods are different. Maybe we are to assume the impulse is given at the ideal point (the one requiring the least impulse) in their relative motions.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top