Calculating Angular and Linear Speeds of Pulley and Belt

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Belt Pulley
Click For Summary

Discussion Overview

The discussion revolves around calculating the angular and linear speeds of a pulley and belt system, focusing on the relationships between arc length, radius, and angular speed. Participants explore the definitions and units involved in these calculations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant calculates the angular speed of the pulley as approximately 0.34 rad/s based on the belt's speed and radius.
  • Another participant questions the initial calculations, suggesting that the angular speed should be 0.24 rad/s instead, citing the need for clarity in the definitions of variables used.
  • There is confusion regarding the notation used for arc length and speed, with some participants noting that 's' is typically used for arc length while 'v' is used for speed.
  • Participants discuss the appropriate symbols for angular speed, with some suggesting that 'a' is not commonly used for angle, which is usually represented by other symbols like φ or θ.
  • Clarifications are made regarding the relationship between linear speed, angular speed, and the radius of the pulley, with calculations presented for both 1 second and 18 seconds of belt travel.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct value of angular speed, with differing calculations presented. There is ongoing discussion about the notation and definitions used in the calculations, indicating some level of confusion and disagreement.

Contextual Notes

Participants express uncertainty regarding the notation for speed and angle, and there are mentions of potential calculation errors. The discussion reflects a need for clearer definitions and consistent use of symbols in the context of angular and linear speed calculations.

Who May Find This Useful

Students and individuals interested in understanding the relationships between linear and angular motion, particularly in mechanical systems involving pulleys and belts.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
A pulley has a radius of $12.96\text { cm}$
it takes $18\text { s}$ for $56\text { cm}$ of belt to go around the pulley.

(a) find the angular speed of the pulley in $\displaystyle\frac{\text {rad}}{\text{s}}$

well from $\displaystyle\frac{56\text { cm}}{18\text{ s}}
\approx \frac{3.11\text { cm}}{\text{s}}$

and $\displaystyle\text {rad}=\frac{S}{r}
=\frac{3.11\text { cm}}{12.96\text { cm}}

\approx 0.34 \text{ rad}$

since $\text{S}$ is the arc length for one $\text{s}$ then

$\displaystyle\approx \frac{0.34\text {rad}}{\text{s}}$ angular speed

(b) find the linear speed of the belt in $\displaystyle\frac{\text {cm}}{\text{s}}
\approx \frac{3.11\text { cm}}{\text{s}}$

well if correct?? it seem a little bit choppy way to solve it.
 
Mathematics news on Phys.org
karush said:
A pulley has a radius of $12.96\text { cm}$
it takes $18\text { s}$ for $56\text { cm}$ of belt to go around the pulley.

(a) find the angular speed of the pulley in $\displaystyle\frac{\text {rad}}{\text{s}}$

well from $\displaystyle\frac{56\text { cm}}{18\text{ s}}
\approx \frac{3.11\text { cm}}{\text{s}}$

and $\displaystyle\text {rad}=\frac{S}{r}
=\frac{3.11\text { cm}}{12.96\text { cm}}

\approx 0.34 \text{ rad}$

since $\text{S}$ is the arc length for one $\text{s}$ then

$\displaystyle\approx \frac{0.34\text {rad}}{\text{s}}$ angular speed

(b) find the linear speed of the belt in $\displaystyle\frac{\text {cm}}{\text{s}}
\approx \frac{3.11\text { cm}}{\text{s}}$

well if correct?? it seem a little bit choppy way to solve it.

Yeah. It's a bit choppy. ;)

There is a difference between quantities and units.
Speed is a quantity, rad is a unit.
Note that rad is a rather special unit, since it's a dimensionless unit like "rev".
Take care though, since you have $2\pi \text{ rad}$ in one $\text{rev}$.

The usual symbol for the quantity angular speed is $\omega$, which has the unit $\text{rad/s}$.

Btw, can I assume that with S you meant the speed of the belt?
I'm asking since the usual symbol for speed is v.

Anyway, in that case you have for (a):
$$\omega = \frac S r = \frac {3.11\frac{\text{cm}}{\text{s}}}{12.96\text { cm}} = 0.24 \frac{\text{rad}}{\text{s}}$$
So I'm afraid your answer is not quite right, neither numerically, nor in the specification of the units.

Your answer for (b) is correct though.
 
I like Serena said:
Btw, can I assume that with S you meant the speed of the belt?
I'm asking since the usual symbol for speed is v.

OK, well, from the book i am looking at
$\text{s} = \text{arc length}$ so $\displaystyle\text{a}=\frac{s}{r}$

where $\text{r}=$ radius
and $\text{a}=$ angle in degrees or radians

this is confusing since $\text{s}$ looks like it is speed or seconds but is arc length
which I capitalized earlier to distinguish from speed or seconds.
so what is meant is.$\displaystyle\text {rad}=\frac{s}{r} =\frac{3.11\text { cm}}{12.96\text { cm}} \approx 0.34 \text{ rad}$

and so

$\displaystyle\omega = \frac{a}{t} = \frac {0.34\text{rad}}{sec}$

or is this fog over choppy waters
the notation is kinda well..
 
Last edited:
karush said:
ok, well, from the book i am looking at
$\text{s} = \text{arc length}$ so $\displaystyle\text{a}=\frac{s}{r}$

where $\text{r}=$ radius
and $\text{a}=$ angle in degrees or radians

this is confusing since $\text{s}$ looks like it is speed or seconds but is arc length
which I capitalized earlier to distinguish from speed or seconds.
so what is meant is.$\displaystyle\text {rad}=\frac{s}{r} =\frac{3.11\text { cm}}{12.96\text { cm}} \approx 0.34 \text{ rad}$

and so

$\displaystyle\omega = \frac{a}{t} = \frac {0.34\text{rad}}{sec}$

or is this fog over choppy waters
the notation is kinda well..

Ah okay.
Actually you can distinguish the distance $s$ from seconds $\text{s}$ by italic versus upright.
It's unusual though to use $a$ as an angle. The symbol $a$ is usually an acceleration. Angle is usually denoted as $\phi$ or $\theta$.

Anyway, what you should have is that in a period of $t=1\text{ s}$ the belt travels a distance $s=3.11\text { cm}$ along a radius $r=12.96\text { cm}$.
The corresponding angle is:
$$a =\frac{s}{r} =\frac{3.11\text { cm}}{12.96\text { cm}} = 0.24 \text{ rad}$$
Therefore the corresponding angular speed is:
$$\omega = \frac{a}{t} = 0.24 \frac {\text{rad}}{\text{s}}$$Alternatively you could say that in a period of $t=18\text{ s}$ the belt travels a distance $s=56\text{ cm}$ along a radius of $r=12.96\text { cm}$.
Then the corresponding angle is:
$$a =\frac{s}{r} =\frac{56\text { cm}}{12.96\text { cm}} = \frac{56}{12.96} \text{ rad}$$
And the corresponding angular speed is:
$$\omega = \frac{a}{t} = \frac {\frac{56}{12.96}}{18} \frac{\text{rad}}{\text{s}} = 0.24 \frac {\text{rad}}{\text{s}}$$
 
OK, think i am getting the picture... so .24 not .34 calc error

you were a great help these textbooks are sometimes shy on info to understand...

I post a couple more of these to make sure I have it down...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 6 ·
Replies
6
Views
9K
  • · Replies 2 ·
Replies
2
Views
14K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K