MHB Calculating Bond Value - 3.5 Yr Holding, 8% Coupon

  • Thread starter Thread starter natashamarie
  • Start date Start date
  • Tags Tags
    Bond Value
natashamarie
Messages
1
Reaction score
0
You purchase a bond with a face value of $1000 and a coupon rate of 9.8% compounded semi-annually. The bond has a maturity of 10 years. How mush is the bond worth if you sell it after 3.5 years and the interest rate for similar bonds is 8% compounded semi-annually? Assume you clip the latest coupon before you sell it.
 
Mathematics news on Phys.org
natashamarie said:
You purchase a bond with a face value of $1000 and a coupon rate of 9.8% compounded semi-annually. The bond has a maturity of 10 years. How mush is the bond worth if you sell it after 3.5 years and the interest rate for similar bonds is 8% compounded semi-annually? Assume you clip the latest coupon before you sell it.
You've collected 7 of the 20 semiannual coupons, so 13 are left.

The coupon amount = 1000 * .098 / 2 = 49 dollars.

So Present Value (at sale time) = 1000 + present value of 13 payments
of 49 dollars using i = .08/2 = .04 (4%).

Look up the formula for present value of an ordinary annuity; OK?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top